scholarly journals Clogging of Infiltration Basin and Its Impact on Suspended Particles Transport in Unconfined Sand Aquifer: Insights from a Laboratory Study

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1083 ◽  
Author(s):  
Zhike Zou ◽  
Longcang Shu ◽  
Xing Min ◽  
Esther Chifuniro Mabedi

A laboratory study was undertaken to investigate the physical clogging of a sand medium by injecting suspended particles (SP), with diameters ranging from 0.03 to 63.41 μm, into an infiltration basin, which was installed in a sand tank under the condition of constant head. The hydraulic conductivity (K) of the saturated porous medium was found to have decreased by 27% because of re-arrangement over the seven days of self-filtration. A clogging layer was observed on the infiltration basin bottom, probably due to straining over the stormwater infiltration stage. Particle-size analyses also indicate that retention of bigger SP led to faster straining of smaller SP, despite the small fraction of bigger SP. The clogging layer weakened the hydraulic connection between the water level in the basin and the water table of the unconfined aquifer until nearly no water could infiltrate into the aquifer. The deposition of finer SP that entered into the aquifer are governed by the hydrodynamic forces. These finer SP caused non-uniform permeability reduction of the porous medium, with an estimated 35% of permeability reduction occurring beneath the infiltration basin. However, the reduction appears to be reversible, as the fine SP deposited on the pore surfaces of the porous medium can be released or detached by the continuous horizontal hydraulic gradient. Extended tailing of the outlet breakthrough curve (BTC) also strongly supported the detachment of SP. This study focused on the effects of particles’ polydispersity and hydrodynamic forces on the hydraulic characteristics of the porous medium.

2019 ◽  
Vol 9 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Du Xinqiang ◽  
Song Yalin ◽  
Ye Xueyan ◽  
Luo Ran

Abstract Column experiments were conducted to examine the clogging effects of colloids under controlled conditions of solution ionic strength (IS) and porous media roughness. The results showed that colloids in recharge water play an important role in the clogging process of saturated porous media, such that even a small amount of colloid may cause a large reduction in the permeability of the porous medium. Clogging at the pore throat was inferred to be the main reason for the severe permeability reduction of porous media. The characteristics of colloid clogging were clearly influenced by both IS and medium roughness. Recharge water with a higher IS facilitated greater attachment of colloids to the surface of the saturated porous medium, which lead to superficial clogging, while collectors with a rough surface resulted in greater clogging than collectors with a smooth surface.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1885 ◽  
Author(s):  
Zhike Zou ◽  
Longcang Shu ◽  
Xing Min ◽  
Esther Chifuniro Mabedi

The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of SP in a sand column were investigated under a constant flow condition, for five stormwater concentrations. A depth-dependent initial filter coefficient is incorporated into the conventional filtration model. This modified model considers the heterogeneity of the particle population by lumping the capture of heterogeneous SP into a capture probability. The good agreement between the results of the modified model and the experimental results of measured outlet concentration and average specific deposit validated the modified model. The experiment data and the simulation results both indicate that the highly hyper-exponential retention profiles are caused by non-uniform deposition of heterogeneous SP; and, the conventional model was found to homogenize the spatial distribution of SP retention and overestimate retention of the porous medium. Local and overall permeability reductions were assessed by an empirical relationship and the Kozeny-Carman model, respectively. It is shown that consideration of polydisperse suspended particles is of primary importance. This study highlights the effects of polydisperse particles on SP deposition in a saturated porous medium.


Sign in / Sign up

Export Citation Format

Share Document