scholarly journals Specific Types and Adaptability Evaluation of Managed Aquifer Recharge for Irrigation in the North China Plain

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 562 ◽  
Author(s):  
Shuai Liu ◽  
Weiping Wang ◽  
Shisong Qu ◽  
Yan Zheng ◽  
Wenliang Li

The North China Plain is the main grain production district in China, with a large area of well irrigation resulting in a large groundwater depression cone. In the 1970s and 1980s, small-scale managed aquifer recharge (MAR) projects were developed to recharge shallow groundwater, which played an important role in ensuring stable and high crop yields. MAR projects are divided into 10 types based on local water conservancy characteristics. The combined use of well–canal irrigation has been widespread in the Yellow River Irrigation District of Shandong Province for nearly 40 years, where canals play multiple roles of transporting and storing Yellow River water or local surface water, recharging groundwater and providing canal irrigation. Moreover, the newly developed open channel–underground perforated pipe–shaft–water saving irrigation system can further expand the scope and amount of groundwater recharge and prevent system clogging through three measures. Finally, an adaptability zoning evaluation system of water spreading has been established in Liaocheng City of Shandong Province based on the following five factors: groundwater depth, thickness of fine sand, specific yield, irrigation return flow, and groundwater extraction intensity. The results show that MAR is more adaptable to the western region than to the eastern and central regions.

Author(s):  
David A. Pietz

Flowing through the North China Plain, one of China’s major agricultural regions, the Yellow River has long represented a challenge to Chinese governments to manage. Preventing floods has been an overriding concern for these states in order to maintain a semblance of ecological equilibrium on the North China Plain. This region’s environment is heavily influenced by seasonal fluctuations in precipitation, leading to a long history of famine, particularly in the late 19th and early 20th centuries when water management structures disintegrated with the deterioration of the imperial system. In the 20th century, new civil and hydraulic engineering techniques and technologies held the promise for enhanced management of the region’s waterways. After 1949, the new government of the People’s Republic used a hybrid approach consisting of the tenets of multipurpose water management combined with the tools of mass mobilization that were hallmarks of the Chinese Communist Party. The wide-ranging exploitation of surface and groundwater resources during the Maoist period left a long shadow for the post-Mao period that witnessed rapid consumption of water to fuel agricultural, industrial, and urban reforms. The challenge for the contemporary state in China is creating a system of water allocation through increased supply and demand management that can sustain the economic and social transformations of the era.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2477
Author(s):  
Lu Wang ◽  
Wolfgang Kinzelbach ◽  
Huaixian Yao ◽  
Jakob Steiner ◽  
Haijing Wang

The large number of users and the small scale of wells greatly complicate monitoring of groundwater abstraction in areas of intensive pumping by numerous smallholders such as in the North China Plain. This paper presents a study in a typical county in the North China Plain. It discusses the application and challenges of an indirect, energy-based approach to groundwater abstraction monitoring. Intensive field experiments at individual wells were carried out to provide a basis for the conversion from electric energy consumption to groundwater abstraction and to explore the feasibility of direct and indirect abstraction monitoring methods in the study area. The results show that the main challenge of electricity-to-water conversion lies in the large spread of conversion factors between wells. The conversion error at an individual well is found to be less than 20%. The same accuracy is achieved on spatially aggregated levels by testing only a small number of wells. Trade-offs can be made to obtain groundwater abstraction estimates at the required accuracy and with reasonable efforts regarding data collection. The analysis shows that energy-based groundwater abstraction monitoring outperforms direct water metering with respect to cost and robustness. It provides satisfactory data accuracy and equitability in regions where irrigation wells are powered by electricity.


2020 ◽  
Vol 546 ◽  
pp. 109691 ◽  
Author(s):  
Guoqiao Xiao ◽  
Yuqi Sun ◽  
Jilong Yang ◽  
Qiuzhen Yin ◽  
Guillaume Dupont-Nivet ◽  
...  

Author(s):  
Min Xue ◽  
Jianzhong Ma ◽  
Guiqian Tang ◽  
Shengrui Tong ◽  
Bo Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document