scholarly journals Spatiotemporal Dynamics of Mediterranean Shallow Coastal Fish Communities along a Gradient of Marine Protection

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1537
Author(s):  
Anthony R. Marshak ◽  
Just Cebrian ◽  
Kenneth L. Heck ◽  
Crystal L. Hightower ◽  
Andrea M. Kroetz ◽  
...  

The importance of habitat factors in designing marine reserves and evaluating their performance over time has been regularly documented. Over three biennial sampling periods, we examined the effects of vegetated coverage and habitat diversity (i.e., patchiness) on fish density, community composition, and species-specific patterns along a gradient of protection from harvest in the shallow Spanish southern Mediterranean, including portions of the Tabarca marine reserve. With the exception of two herbivores (Sarpa salpa and Symphodus tinca), vegetated cover did not significantly affect fish densities, while habitat diversity was an influential factor across all three sampling periods. Overall, fish density was more positively associated with more continuous vegetated or unvegetated habitats, and was greatest in areas of highest protection (Tabarca II – Isla Nao site). These patterns were usually observed for four abundant fish species (Boops boops, Chromis chromis, Oblada melanura, and S. salpa). Fish community composition was distinct in the most protected portion of the Tabarca reserve, where it was also most stable. Our findings align with previous investigations of the Tabarca reserve and its surrounding areas, and demonstrate its continued effectiveness in conserving fish biomass and habitat. Together with effective management, marine reserves can facilitate greater species abundance, more stable biological communities, and resilient ecosystems.

2016 ◽  
Vol 12 (11) ◽  
pp. 20160503 ◽  
Author(s):  
József Geml ◽  
Tatiana A. Semenova ◽  
Luis N. Morgado ◽  
Jeffrey M. Welker

We characterized fungal communities in dry and moist tundra and investigated the effect of long-term experimental summer warming on three aspects of functional groups of arctic fungi: richness, community composition and species abundance. Warming had profound effects on community composition, abundance, and, to a lesser extent, on richness of fungal functional groups. In addition, our data show that even within functional groups, the direction and extent of response to warming tend to be species-specific and we recommend that studies on fungal communities and their roles in nutrient cycling take into account species-level responses.


2021 ◽  
Author(s):  
◽  
Anjali Pande

<p>This study illustrates the importance of baseline surveys, why they are necessary and how best to conduct them. A proposed marine reserve site (the south coast of Wellington) was monitored for three years to establish a comprehensive baseline study. The results were used to recommend appropriate methodology for sampling in this area and also to establish which species are the best to use as indicator species to detect any possible change occurring in this area due to future reservation status. The 11 km stretch of coast surveyed, which included future reserve and control sites, was tested for heterogeneity, to prevent any future differences in sites being attributed to reservation status as opposed to natural variation. It was determined that an environmental gradient exists along the south coast, from east to west, most likely due to increasing wave exposure and increasingly strong tides and currents towards the west.  An established marine reserve (Kapiti Marine Reserve) was also monitored over the same period of time to establish what differences existed in size and abundance of key species between reserve and control sites. The data collected in this investigation were also compared to data collected immediately prior to reserve establishment to determine what changes had occurred over time. Results showed that sites inside the marine reserve supported a greater species abundance, and in some cases, larger size classes. There was some evidence for a general shift in the community structure particularly in algal plants. However, these results may have been confounded by the effect of one site that appeared to have a very high natural species diversity and abundance (even before reservation  status). It was concluded that the one-off survey conducted before establishment of this reserve was inadequate to use as a baseline against which to detect changes. No changes were found between the present study and the preliminary survey, although specific data analysis indicated a reserve effect. Continued sampling methodology for Kapiti Marine Reserve area was suggested. Raw data, on two key species (blue cod and rock lobster) from six marine reserves in New Zealand were investigated in an attempt to perform a statistical "meta-analysis" of the effects of marine reserves in New Zealand. A meta-analysis is different from a narrative review as it uses statistical methods to compare results across studies. This methodology has not been applied to studies of marine reserves before. The meta analysis conducted in the present investigation showed that generally marine reserves in New Zealand are having a positive effect, in terms of increasing size and abundance of individual species, as compared to control areas. There is some evidence for a latitudinal trend influencing the "effect size" (a statistical term indicating the magnitude of the treatment tested - in this case, reservation) of the reserves.</p>


2021 ◽  
Author(s):  
◽  
Anjali Pande

<p>This study illustrates the importance of baseline surveys, why they are necessary and how best to conduct them. A proposed marine reserve site (the south coast of Wellington) was monitored for three years to establish a comprehensive baseline study. The results were used to recommend appropriate methodology for sampling in this area and also to establish which species are the best to use as indicator species to detect any possible change occurring in this area due to future reservation status. The 11 km stretch of coast surveyed, which included future reserve and control sites, was tested for heterogeneity, to prevent any future differences in sites being attributed to reservation status as opposed to natural variation. It was determined that an environmental gradient exists along the south coast, from east to west, most likely due to increasing wave exposure and increasingly strong tides and currents towards the west.  An established marine reserve (Kapiti Marine Reserve) was also monitored over the same period of time to establish what differences existed in size and abundance of key species between reserve and control sites. The data collected in this investigation were also compared to data collected immediately prior to reserve establishment to determine what changes had occurred over time. Results showed that sites inside the marine reserve supported a greater species abundance, and in some cases, larger size classes. There was some evidence for a general shift in the community structure particularly in algal plants. However, these results may have been confounded by the effect of one site that appeared to have a very high natural species diversity and abundance (even before reservation  status). It was concluded that the one-off survey conducted before establishment of this reserve was inadequate to use as a baseline against which to detect changes. No changes were found between the present study and the preliminary survey, although specific data analysis indicated a reserve effect. Continued sampling methodology for Kapiti Marine Reserve area was suggested. Raw data, on two key species (blue cod and rock lobster) from six marine reserves in New Zealand were investigated in an attempt to perform a statistical "meta-analysis" of the effects of marine reserves in New Zealand. A meta-analysis is different from a narrative review as it uses statistical methods to compare results across studies. This methodology has not been applied to studies of marine reserves before. The meta analysis conducted in the present investigation showed that generally marine reserves in New Zealand are having a positive effect, in terms of increasing size and abundance of individual species, as compared to control areas. There is some evidence for a latitudinal trend influencing the "effect size" (a statistical term indicating the magnitude of the treatment tested - in this case, reservation) of the reserves.</p>


2016 ◽  
Vol 97 (7) ◽  
pp. 1479-1482 ◽  
Author(s):  
Thomas J. Ashton ◽  
Meriem Kayoueche-Reeve ◽  
Andrew J. Blight ◽  
Jon Moore ◽  
David M. Paterson

Accurate discrimination of two morphologically similar species of Patella limpets has been facilitated by using qPCR amplification of species-specific mitochondrial genomic regions. Cost-effective and non-destructive sampling is achieved using a mucus swab and simple sample lysis and dilution to create a PCR template. Results show 100% concurrence with dissection and microscopic analysis, and the technique has been employed successfully in field studies. The use of highly sensitive DNA barcoding techniques such as this hold great potential for improving previously challenging field assessments of species abundance.


2021 ◽  
Author(s):  
Muriel Brückner ◽  
Christian Schwarz ◽  
Giovanni Coco ◽  
Anne Baar ◽  
Márcio Boechat Albernaz ◽  
...  

&lt;p&gt;Benthic species that live within estuarine sediments stabilize or destabilize local mud deposits through their eco-engineering activities, affecting the erosion of intertidal sediments. Possibly, the altered magnitudes in eroded sediment affect the large-scale redistribution of fines and hence morphological change. To quantify this biological control on the morphological development of estuaries, we numerically model i) biofilms, ii) two contrasting bioturbating species present in NW-Europe, and iii) their combinations by means of our novel eco-morphodynamic model. The model predicts local mud erodibility based on species pattern, which dynamically evolves from the hydrodynamics, soil mud content, competition and grazing, and is fed back into the hydromorphodynamic computations.&lt;/p&gt;&lt;p&gt;We find that biofilms reduce mud erosion on intertidal floodplains and stabilize estuarine morphology, whereas the two bioturbators significantly enhance inter- and supratidal mud erosion and bed elevation change, leading to a large-scale reduction in deposited mud and a widening of the estuary. In turn, the species-dependent changes in mud content redefines their habitat and leads to a redistribution of species abundances. Here, the eco-engineering affects habitat conditions and species abundance while species interactions determine species dominance. Our results show that species-specific biostabilization and bioturbation determine large-scale morphological change through mud redistribution, and at the same time affect species distribution. This suggests that benthic species have subtly changed estuarine morphology through space and time and that aggravating habitat degradation might lead to large effects on the morphology of future estuaries.&lt;/p&gt;


2009 ◽  
Vol 36 (4) ◽  
pp. 268-276 ◽  
Author(s):  
BENJAMIN S. HALPERN ◽  
SARAH E. LESTER ◽  
JULIE B. KELLNER

SUMMARYNo-take marine reserves are widely recognized as an effective conservation tool for protecting marine resources. Despite considerable empirical evidence that abundance and biomass of fished species increase within marine reserve boundaries, the potential for reserves to provide fisheries and conservation benefits to adjacent waters remains heavily debated. This paper uses statistical and population models to evaluate published empirical data on adult spillover from marine reserves and shows that spillover is a common phenomenon for species that respond positively to reserve protection, but at relatively small scales, detectable on average up to 800 m from reserve boundaries. At these small scales, local fisheries around reserves were likely unsustainable in 12 of 14 cases without the reserve, and spillover partially or fully offsets losses in catch due to reserve closure in the other two cases. For reserves to play a role in sustaining and replenishing larger-scale fished stocks, networks of reserves may be necessary, but as few exist this is difficult to evaluate. The results suggest reserves can simultaneously meet conservation objectives and benefit local fisheries adjacent to their boundaries.


2016 ◽  
Vol 23 (3) ◽  
pp. 1023-1035 ◽  
Author(s):  
Remy R. Okazaki ◽  
Erica K. Towle ◽  
Ruben van Hooidonk ◽  
Carolina Mor ◽  
Rivah N. Winter ◽  
...  

2012 ◽  
Vol 39 (3) ◽  
pp. 199-203 ◽  
Author(s):  
A.J. CAVEEN ◽  
C.J. SWEETING ◽  
T.J. WILLIS ◽  
N.V.C. POLUNIN

SUMMARYThe scientific literature (including some of the most high-profile papers) on the ecological and fisheries effects of permanent no-take marine reserves is dominated by examples from hard tropical and warm temperate ecosystems. It appears to have been tacitly assumed that inference from these studies can directly inform expectations of marine reserve effects in cooler temperate and cold temperate waters. Trends in peer-reviewed studies indicate that the empirical basis for this assumption is tenuous because of a relative lack of research effort in cooler seas, and differences between tropical and temperate regions in ecology, seasonality, the nature of fisheries and prevailing governance regimes.


Sign in / Sign up

Export Citation Format

Share Document