Benthic species as mud patrol - modelled effects of bioturbators and biofilms on large-scale estuarine mud and morphology

Author(s):  
Muriel Brückner ◽  
Christian Schwarz ◽  
Giovanni Coco ◽  
Anne Baar ◽  
Márcio Boechat Albernaz ◽  
...  

<p>Benthic species that live within estuarine sediments stabilize or destabilize local mud deposits through their eco-engineering activities, affecting the erosion of intertidal sediments. Possibly, the altered magnitudes in eroded sediment affect the large-scale redistribution of fines and hence morphological change. To quantify this biological control on the morphological development of estuaries, we numerically model i) biofilms, ii) two contrasting bioturbating species present in NW-Europe, and iii) their combinations by means of our novel eco-morphodynamic model. The model predicts local mud erodibility based on species pattern, which dynamically evolves from the hydrodynamics, soil mud content, competition and grazing, and is fed back into the hydromorphodynamic computations.</p><p>We find that biofilms reduce mud erosion on intertidal floodplains and stabilize estuarine morphology, whereas the two bioturbators significantly enhance inter- and supratidal mud erosion and bed elevation change, leading to a large-scale reduction in deposited mud and a widening of the estuary. In turn, the species-dependent changes in mud content redefines their habitat and leads to a redistribution of species abundances. Here, the eco-engineering affects habitat conditions and species abundance while species interactions determine species dominance. Our results show that species-specific biostabilization and bioturbation determine large-scale morphological change through mud redistribution, and at the same time affect species distribution. This suggests that benthic species have subtly changed estuarine morphology through space and time and that aggravating habitat degradation might lead to large effects on the morphology of future estuaries.</p>

2020 ◽  
Author(s):  
Muriel Brückner ◽  
Christian Schwarz ◽  
Maarten Kleinhans

<p>Macrobenthic species that live within or on top of estuarine sediments can destabilize local mud deposits through their bioturbating activities. Resulting enhanced sediment availability will affect redistribution of fines and hence large-scale morphological change. To quantify this biological control on the morphological development of estuaries, we numerically model two contrasting bioturbating species present in NW-Europe by means of our novel literature-based eco-morphodynamic model. We find significant effects of both bioturbators on local mud accumulation and bed elevation change, leading to a large-scale reduction in deposited mud and gently sloped intertidal floodplains. In turn, the species-dependent reduction of mud content redefines their habitat and leads to constricted species abundances. Our results show that species-specific macrobenthic bioturbation determines large-scale morphological change through mud redistribution. This suggests that macrobenthic species have subtly changed estuarine morphology through space and time, depending on their distribution and composition.</p>


2016 ◽  
Vol 97 (7) ◽  
pp. 1479-1482 ◽  
Author(s):  
Thomas J. Ashton ◽  
Meriem Kayoueche-Reeve ◽  
Andrew J. Blight ◽  
Jon Moore ◽  
David M. Paterson

Accurate discrimination of two morphologically similar species of Patella limpets has been facilitated by using qPCR amplification of species-specific mitochondrial genomic regions. Cost-effective and non-destructive sampling is achieved using a mucus swab and simple sample lysis and dilution to create a PCR template. Results show 100% concurrence with dissection and microscopic analysis, and the technique has been employed successfully in field studies. The use of highly sensitive DNA barcoding techniques such as this hold great potential for improving previously challenging field assessments of species abundance.


Author(s):  
Yan Cui ◽  
Wenqiao Wayne Yuan ◽  
Zhijian Pei

Continuous use of petroleum derived fuels is widely recognized as unsustainable due to depleting supplies and the accumulation of greenhouse gases in the environment. Renewable, carbon neutral transport fuels are needed for environmental and economic sustainabilities. Algae have been demonstrated to be one of the most promising sources for biofuel production. However, large-scale algae production and harvesting for energy manufacturing are too costly using existing methods. The approach of growing algae on solid carriers is innovative and can potentially lead to cost-effective manufacturing of algae biofuels. As cells approach to the solid surface, many factors come in to influence microbial attachment such as the surface wettability, free energy, polarity, roughness and topography. Surface wettability plays an important role in the initial cell attachment. For further contact, surface free energy and polarity are more directly related to cell-substratum attachment strength. Surface roughness and texture are species-specific parameters and have been applied widely in attachment studies.


2018 ◽  
Vol 15 (16) ◽  
pp. 5189-5202 ◽  
Author(s):  
Gustaf Granath ◽  
Håkan Rydin ◽  
Jennifer L. Baltzer ◽  
Fia Bengtsson ◽  
Nicholas Boncek ◽  
...  

Abstract. Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is species-specific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue δ18O tracks the δ18O isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia using two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in δ13C values between species. For S. magellanicum δ13C decreased with increasing height above the water table (HWT, R2=17 %) and was positively correlated to productivity (R2=7 %). Together these two variables explained 46 % of the between-site variation in δ13C values. For S. fuscum, productivity was the only significant predictor of δ13C but had low explanatory power (total R2=6 %). For δ18O values, approximately 90 % of the variation was found between sites. Globally modelled annual δ18O values in precipitation explained 69 % of the between-site variation in tissue δ18O. S. magellanicum showed lower δ18O enrichment than S. fuscum (−0.83 ‰ lower). Elevation and climatic variables were weak predictors of tissue δ18O values after controlling for δ18O values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue δ18O values from modelled annual δ18O values in precipitation, and (b) the possibility of relating tissue δ13C values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kim de Mutsert ◽  
Kristy A. Lewis ◽  
Eric D. White ◽  
Joe Buszowski

Coastal erosion and wetland loss are affecting Louisiana to such an extent that the loss of land between 1932 and 2016 was close to 5,000 km2. To mitigate this decline, coastal protection and restoration projects are being planned and implemented by the State of Louisiana, United States. The Louisiana Coastal Master Plan (CMP) is an adaptive management approach that provides a suite of projects that are predicted to build or maintain land and protect coastal communities. Restoring the coast with this 50-year large-scale restoration and risk reduction plan has the potential to change the biomass and distribution of economically and ecologically important fisheries species in this region. However, not restoring the coast may have negative impacts on these species due to the loss of habitat. This research uses an ecosystem model to evaluate the effects of plan implementation versus a future without action (FWOA) on the biomass and distribution of fisheries species in the estuaries over 50 years of model simulations. By simulating effects using a spatially-explicit ecosystem model, not only can the changes in biomass in response to plan implementation be evaluated, but also the distribution of species in response to the planned restoration and risk reduction projects. Simulations are performed under two relative sea level rise (SLR) scenarios to understand the effects of climate change on project performance and subsequent fisheries species biomass and distribution. Simulation output of eight economically important fisheries species shows that the plan mostly results in increases in species biomass, but that the outcomes are species-specific and basin-specific. The SLR scenario highly affects the amount of wetland habitat maintained after 50 years (with higher levels of wetland loss under increased SLR) and, subsequently, the biomass of species depending on that habitat. Species distribution results can be used to identify expected changes for specific species on a regional basis. By making this type of information available to resource managers, precautionary measures of ecosystem management and adaptation can be implemented.


2018 ◽  
Author(s):  
Filippo Ferrario ◽  
Thew Suskiewicz ◽  
Yuri Rzhanov ◽  
Ladd E Johnson ◽  
Philippe Archambault

Whether we want to conserve, restore or enhance biodiversity, or use it to assess the environmental status of our coasts, the indissoluble link between biodiversity and ecosystem functioning is influenced by the spatial context of an ecosystem (the seascape). Using field-based research conducted in subarctic regions, we will show how the seascape can modulate species interactions which impair the habitat-forming functions of kelp. Specifically, bottom heterogeneity modulates top-down grazer control impacting the functioning of artificial structures as habitats for canopy-forming seaweeds in habitat compensation efforts. Unfortunately, coastal habitat maps from which seascape information could be obtained are often non-existant or are coarse in scale. We thus present how optical imagery-derived photomosaics can be used to map biological and geomorphological features over continuous and wide areas. Moreover, photomosaics can reveal patterns of local distribution of benthic species that can be useful when assessing biodiversity to evaluate the environmental status in coastal areas. Seascape context is thus a determining element which will improve our ability to maintain ecosystem functioning and services and inform coastal management.


2021 ◽  
Vol 4 ◽  
Author(s):  
Christina Wiebe ◽  
Petra Nowak ◽  
Hendrik Schubert

Assessing the biodiversity of an ecosystem plays a major role in ecosystem management. However, proper determination on species-level is often tricky when morphological features are scarce and especially rare species require huge sampling efforts to be detected in the aquatic realm. As an alternative to conventional methods, environmental samples can be examined via the eDNA method, allowing for large-scale integration as well as taxa resolution independent from expression of morphological characters. However, to apply this technique genetic markers that are specific to a species or at least a genus are required. Such markers until now have been successfully developed only for a few well studied taxonomic groups like, e.g., fishes and amphibians, but are still missing for others, especially plants and algae (e.g. Bista et al. 2017). This project focusses on the development of species-specific markers for the macrophytic green algae Tolypella canadensis (Characeae, Charophyta), a rare alga preferring deep water and known so far mainly from remote places. Tolypella canadensis is a circumpolar species and prefers oligotrophic lakes, where it grows in depths up to 13 m (Langangen 2002; Romanov and Kopyrina 2016). In addition, proper determination of Tolypella-species is a field of a few specialists, further complicating monitoring or even detection of this rare species. The design of the species-specific primers was based on reference nucleotide sequences of the chloroplast genes rbcL, psbC and atpB and of the ribosomal internal transcribed spacer regions ITS1 and ITS2, obtained from GenBank (Perez et al. 2017). To determine the specificity of the newly designed primers, DNA isolates obtained from T. canadensis specimens collected from the Torneträsk (Sweden, 2018) and other charophyte species were prepared in different proportions. The sensitivity of the primers was experimentally assayed by using serial dilutions of T. canadensis DNA. Additionally, a mock test comprised of a sample with the DNA of several charophyte species was conducted and finally, the markers were tested on environmental samples from the Torneträsk. Tolypella canadensis-specific primers of the ITS2 region yielded positive PCR amplifications of one single band when T. canadensis was present in a sample. Cross-amplification was not found during the mock test; other charophyte species did not yield positive amplification. The eDNA samples from the Torneträsk validated the performance of the ITS2 marker. The T. canadensis-specific marker designed in this project was proven to be sensitive and accurate. It could be recommended as a useful tool to detect the presence of T. canadensis DNA, even at low concentration and in complex samples containing other charophyte species.


2020 ◽  
Author(s):  
Karen E Rice ◽  
Rebecca A Montgomery ◽  
Artur Stefanski ◽  
Roy L Rich ◽  
Peter B Reich

Abstract Background and Aims Warmer temperatures and altered precipitation patterns are expected to continue to occur as the climate changes. How these changes will impact the flowering phenology of herbaceous perennials in northern forests is poorly understood but could have consequences for forest functioning and species interactions. Here, we examine the flowering phenology responses of five herbaceous perennials to experimental warming and reduced summer rainfall over 3 years. Methods This study is part of the B4WarmED experiment located at two sites in northern Minnesota, USA. Three levels of warming (ambient, +1.6 °C and +3.1 °C) were crossed with two rainfall manipulations (ambient and 27 % reduced growing season rainfall). Key Results We observed species-specific responses to the experimental treatments. Warming alone advanced flowering for four species. Most notably, the two autumn blooming species showed the strongest advance of flowering to warming. Reduced rainfall alone advanced flowering for one autumn blooming species and delayed flowering for the other, with no significant impact on the three early blooming species. Only one species, Solidago spp., showed an interactive response to warming and rainfall manipulation by advancing in +1.6 °C warming (regardless of rainfall manipulation) but not advancing in the warmest, driest treatment. Species-specific responses led to changes in temporal overlap between species. Most notably, the two autumn blooming species diverged significantly in their flowering timing. In ambient conditions, these two species flowered within the same week. In the warmest, driest treatment, flowering occurred over a month apart. Conclusions Herbaceous species may differ in how they respond to future climate conditions. Changes to phenology may lead to fewer resources for insects or a mismatch between plants and pollinators.


Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 78 ◽  
Author(s):  
Davide Maggioni ◽  
Luca Saponari ◽  
Davide Seveso ◽  
Paolo Galli ◽  
Andrea Schiavo ◽  
...  

Green fluorescence is a common phenomenon in marine invertebrates and is caused by green fluorescent proteins. Many hydrozoan species display fluorescence in their polyps and/or medusa stages, and in a few cases patterns of green fluorescence have been demonstrated to differ between closely related species. Hydrozoans are often characterized by the presence of cryptic species, due to the paucity of available morphological diagnostic characters. Zanclea species are not an exception, showing high genetic divergence compared to a uniform morphology. In this work, the presence of green fluorescence and the morpho-molecular diversity of six coral- and bryozoan-associated Zanclea species from the Maldivian coral reefs were investigated. Specifically, the presence of green fluorescence in polyps and newly released medusae was explored, the general morphology, as well as the cnidome and the interaction with the hosts, were characterized, and the 16S rRNA region was sequenced and analyzed. Overall, Zanclea species showed a similar morphology, with little differences in the general morphological features and in the cnidome. Three of the analyzed species did not show any fluorescence in both life stages. Three other Zanclea species, including two coral-associated cryptic species, were distinguished by species-specific fluorescence patterns in the medusae. Altogether, the results confirmed the morphological similarity despite high genetic divergence in Zanclea species and indicated that fluorescence patterns may be a promising tool in further discriminating closely related and cryptic species. Therefore, the assessment of fluorescence at a large scale in the whole Zancleidae family may be useful to shed light on the diversity of this enigmatic taxon.


2020 ◽  
Vol 117 (29) ◽  
pp. 17074-17083 ◽  
Author(s):  
James S. Clark ◽  
C. Lane Scher ◽  
Margaret Swift

Observational studies have not yet shown that environmental variables can explain pervasive nonlinear patterns of species abundance, because those patterns could result from (indirect) interactions with other species (e.g., competition), and models only estimate direct responses. The experiments that could extract these indirect effects at regional to continental scales are not feasible. Here, a biophysical approach quantifies environment– species interactions (ESI) that govern community change from field data. Just as species interactions depend on population abundances, so too do the effects of environment, as when drought is amplified by competition. By embedding dynamic ESI within framework that admits data gathered on different scales, we quantify responses that are induced indirectly through other species, including probabilistic uncertainty in parameters, model specification, and data. Simulation demonstrates that ESI are needed for accurate interpretation. Analysis demonstrates how nonlinear responses arise even when their direct responses to environment are linear. Applications to experimental lakes and the Breeding Bird Survey (BBS) yield contrasting estimates of ESI. In closed lakes, interactions involving phytoplankton and their zooplankton grazers play a large role. By contrast, ESI are weak in BBS, as expected where year-to-year movement degrades the link between local population growth and species interactions. In both cases, nonlinear responses to environmental gradients are induced by interactions between species. Stability analysis indicates stability in the closed-system lakes and instability in BBS. The probabilistic framework has direct application to conservation planning that must weigh risk assessments for entire habitats and communities against competing interests.


Sign in / Sign up

Export Citation Format

Share Document