scholarly journals Treatment and Re-Use of Raw Blackwater by Chlorella vulgaris-Based System

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2660
Author(s):  
Marco Antonio Segovia Bifarini ◽  
Miha Žitnik ◽  
Tjaša Griessler Bulc ◽  
Aleksandra Krivograd Klemenčič

In this study, we examined a Chlorella vulgaris-based system as a potential solution to change liquid waste, such as blackwater, into valuable products for agriculture while protecting waters from pollution without technical demanding pre-treatment. To evaluate the possibility of nutrient removal and biomass production from raw blackwater, four blackwater dilutions were tested at lab-scale: 50%, 30%, 20%, and 10%. The results showed that even the less diluted raw blackwater was a suitable growth medium for microalgae C. vulgaris. As expected, the optimum conditions were observed in 10% blackwater with the highest growth rate (0.265 d−1) and a nutrient removal efficiency of 99.6% for ammonium and 33.7% for phosphate. However, the highest biomass productivity (5.581 mg chlorophyll-a L−1 d−1) and total biomass (332.82 mg dry weight L−1) were achieved in 50% blackwater together with the highest chemical oxygen demand removal (81%) as a result of the highest nutrient content and thus prolonged growth phase. The results suggested that the dilution factor of 0.5 followed by microalgae cultivation with a hydraulic retention time of 14 days could offer the highest biomass production for the potential use in agriculture and, in parallel, a way to treat raw blackwater from source-separation sanitation systems.

2020 ◽  
Vol 11 (1) ◽  
pp. 174
Author(s):  
Konstantinos P. Papadopoulos ◽  
Christina N. Economou ◽  
Athanasia G. Tekerlekopoulou ◽  
Dimitris V. Vayenas

Algal/cyanobacterial biofilm photobioreactors provide an alternative technology to conventional photosynthetic systems for wastewater treatment based on high biomass production and easy biomass harvesting at low cost. This study introduces a novel cyanobacteria-based biofilm photobioreactor and assesses its performance in post-treatment of brewery wastewater and biomass production. Two different supporting materials (glass/polyurethane) were tested to investigate the effect of surface hydrophobicity on biomass attachment and overall reactor performance. The reactor exhibited high removal efficiency (over 65%) of the wastewater’s pollutants (chemical oxygen demand, nitrate, nitrite, ammonium, orthophosphate, and total Kjeldahl nitrogen), while biomass per reactor surface reached 13.1 and 12.8 g·m−2 corresponding to 406 and 392 mg·L−1 for glass and polyurethane, respectively, after 15 days of cultivation. The hydrophilic glass surface favored initial biomass adhesion, although eventually both materials yielded complete biomass attachment, highlighting that cell-to-cell interactions are the dominant adhesion mechanism in mature biofilms. It was also found that the biofilm accumulated up to 61% of its dry weight in carbohydrates at the end of cultivation, thus making the produced biomass a suitable feedstock for bioethanol production.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1654 ◽  
Author(s):  
Marcin Dębowski ◽  
Paulina Rusanowska ◽  
Marcin Zieliński ◽  
Magda Dudek ◽  
Zdzisława Romanowska-Duda

1970 ◽  
Vol 8 (2) ◽  
pp. 108-116
Author(s):  
Shahrina Akhtar ◽  
Jalal Uddin Ahmed ◽  
Abdul Hamid ◽  
Md Rafiqul Islam

A study was conducted to evaluate 100 chickpea genotypes to explore their genetic diversity in respect of emergence and growth attributes. A high genotypic variation was observed in the characters studied. The highest positive correlation corresponded to the root mass and total plant biomass of the seedlings. Seedling biomass production was highly subjective to seedling vigor. Using discriminant function analysis, the first two functions contributed 46.2 and 39.0%, and altogether 85.2% of the variability among the genotypes. Function 1 was positively related to dry weight of root and total plants. The character with the greatest weight on function 2 was seedling emergence rate. The total dry weight of seedlings played the most dominant role in explaining the maximum variance in the genotypes. The genotypes were grouped into six clusters. Each cluster had specific seedling characteristics and the clusters 5 and 6 were closely related and clearly separated from clusters 1 and 4 for their higher amount of root and total biomass production, and vigorous seedlings, where as, the genotypes in cluster 2 and 3 were intermediate. The genotypes in cluster 5 followed by cluster 6 appeared to be important resources for selecting and developing chickpea variety. Keywords: Chickpea; genotypes; seedling; quality DOI: 10.3329/agric.v8i2.7584 The Agriculturists 8(2): 108-116 (2010)


2000 ◽  
Vol 18 (2) ◽  
pp. 83-88
Author(s):  
Ursula K. Schuch ◽  
Dennis R. Pittenger ◽  
Philip A. Barker

Abstract The objectives of this study were to determine the effects of container volume, container shape, and copper-coating containers on root and shoot growth during nursery production and after establishment in the field. Liners of ficus (Ficus retusa L. ‘Nitida’), a fibrous-rooted species, and Brazilian pepper (Schinus terebinthifolius Raddi.), a coarse-rooted species, were grown in regular or tall #1 containers in a glasshouse and were subsequently transplanted to the field or into #3 or #5 regular or tall containers. During the nursery phase, copper-coated containers improved rootball quality of ficus and pepper, but biomass production was not affected consistenly by copper coating. Tall, narrow versus regular containers restricted pepper growth throughout the nursery phase and field establishment, but had little effect on ficus. Biomass production of pepper trees was greatest in regular-shaped containers, and tall containers reduced growth consistently. Container shape did not affect shoot growth of ficus. The larger container volume of the #5 yielded greater total biomass of pepper and root dry weight of ficus during nursery production than did #3 pots. In the field, shoot dry weight of ficus was greatest when previously grown in #5 containers, and total biomass of pepper was greatest in both regular #3 or #5 containers.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1704-1711 ◽  
Author(s):  
Yan Chen ◽  
Regina P. Bracy ◽  
Allen D. Owings ◽  
Donald J. Merhaut

A nutrient recirculation system (NRS) was used to assess the ability of four ornamental and three wetland plant species to remove nitrogen (N) and phosphorous (P) from stormwater runoff. The NRS was filled with a nutrient solution with total N and P concentrations of 11.3 and 3.1 mg·L−1, respectively, to simulate high levels of nutrient contaminations in stormwater. Nutrient removal abilities of herbaceous perennial ornamental plants, canna (Canna ×generalis Bailey) ‘Australia’, iris (Iris pseudacorus L.) ‘Golden Fleece’, calla lily [Zantedeschia aethiopica (L.) Spreng], and dwarf papyrus (Cyperus haspan L.) were compared with those of wetland plants arrow arum [Peltandra virginica (L.) Schott], pickerelweed (Pontederia cordata L.), and bulltongue arrowhead (Sagittaria lancifolia L.) in three experiments. ‘Australia’ canna had the greatest water consumption, total biomass production, and aboveground N and P content followed by pickerelweed. ‘Golden Fleece’ iris had higher tissue N concentrations than canna but much lower biomass production. Dwarf papyrus had similar total biomass as pickerelweed but less shoot biomass. N and P removed from the NRS units planted with canna (98.7% N and 91.8% P) were higher than those planted with iris and arrow arum (31.6% and 31.5% N, and 38.5% and 26.3% P, respectively). NRS units planted with dwarf papyrus had similar nutrient recovery rate as pickerelweed, but much less total N and P were removed as a result of less water consumption. The NRS units planted with calla lily had lower nutrient removal than canna and pickerelweed. Our results suggest that canna is a promising ornamental species for stormwater mitigation, and harvesting the aboveground biomass of canna can effectively remove N and P from the treatment system. However, more research needs to be done to evaluate factors that might affect plant performance in a floating biofiltration system.


2020 ◽  
Vol 24 (6) ◽  
pp. 11-29
Author(s):  
Mohamad Padri ◽  
Nittaya Boontian ◽  
Chatlada Piasai ◽  
Thunchanok Phorndon

Combination of suitable algae species with wastewater condition is important to achieve high productivity of algae with remarkable removal of contaminants. However, the usage of algae in treating wastewater has not yet to show sufficient removal efficiency when the biomass productivity is extremely enhanced. This review aims to scrutinize and discuss: (1) several promising species for this coupling method; (2) main wastewater characteristics related to the microalgae biomass production and their removal efficiency; (3) metal occurrences and other biotic factors; and (4) constraint of microalgae biomass production and wastewater treatment process. Microalgae such as Chlorella, Spirulina and Scenedesmus are among the most utilized microalgae because of their utilities. Chemical oxygen demand (COD) total nitrogen (TN), and total phosphorous (TP) concentrations affect biomass yield of algae cultivation. Metals occurrences, light intensity and carbon dioxide availability play an important role in process of algae cultivation with diverse optimum levels of each factor. Sufficient but not excess concentration of N and P solely for building biomass and other metabolism activities, mixotrophic condition for algae to digest organic carbon, and heavy metals defense mechanisms are expected to address constraint of biomass generation demand and wastewater treatment efficiency.


2021 ◽  
Author(s):  
Li Sun ◽  
Chunzhi Zhao ◽  
Shiqing Sun ◽  
Changwei Hu ◽  
Yongjun Zhao ◽  
...  

Abstract The present study aimed to determine the effects of multi-walled carbon nanotubes (MWCNTs) concentrations (0, 0.1, 1, 5, 10 mg·L− 1) on tetracycline (TC) and biogas slurry nutrients removal by microalgae Chlorella vulgaris cultivation. Treatments with 1 mg·L− 1 MWCNTs yielded maximum dry weight and cells quantity of 0.81 ± 0.008 g·L− 1 and 5.83×107 cell·L− 1, respectively. The results of chlorophyll a were consistent with rapid fluorescence induction kinetics (OJIP-test), indicating that moderate MWCNTs concentration could enhance microalgal photosynthesis. Maximum chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), tetracycline (TC), and CO2 removal efficiencies were 90.43 ± 5.15%, 78.12 ± 4.33%, 77.07 ± 4.12%, 89.64 ± 3.08%, and 64.26 ± 0.71%, respectively when treated with 1 mg·L− 1 MWCNTs. Of the five MWCNTs concentrations set in this study, the optimal concentration was 1 mg·L− 1 for nutrient and CO2 removal efficiencies. These results indicated that moderate MWCNTs concentrations would promote tetracycline and nutrients removal by enhancing Chlorella vulgaris photosynthesis activity.


Sign in / Sign up

Export Citation Format

Share Document