scholarly journals Evaluation of Chickpea (Cicer arietinum L.) Genotypes for Quality Seedlings

1970 ◽  
Vol 8 (2) ◽  
pp. 108-116
Author(s):  
Shahrina Akhtar ◽  
Jalal Uddin Ahmed ◽  
Abdul Hamid ◽  
Md Rafiqul Islam

A study was conducted to evaluate 100 chickpea genotypes to explore their genetic diversity in respect of emergence and growth attributes. A high genotypic variation was observed in the characters studied. The highest positive correlation corresponded to the root mass and total plant biomass of the seedlings. Seedling biomass production was highly subjective to seedling vigor. Using discriminant function analysis, the first two functions contributed 46.2 and 39.0%, and altogether 85.2% of the variability among the genotypes. Function 1 was positively related to dry weight of root and total plants. The character with the greatest weight on function 2 was seedling emergence rate. The total dry weight of seedlings played the most dominant role in explaining the maximum variance in the genotypes. The genotypes were grouped into six clusters. Each cluster had specific seedling characteristics and the clusters 5 and 6 were closely related and clearly separated from clusters 1 and 4 for their higher amount of root and total biomass production, and vigorous seedlings, where as, the genotypes in cluster 2 and 3 were intermediate. The genotypes in cluster 5 followed by cluster 6 appeared to be important resources for selecting and developing chickpea variety. Keywords: Chickpea; genotypes; seedling; quality DOI: 10.3329/agric.v8i2.7584 The Agriculturists 8(2): 108-116 (2010)

2020 ◽  
Vol 29 (2) ◽  
pp. 229-236
Author(s):  
AT Sharif ◽  
AS Razzaque ◽  
TT Purna ◽  
Md Khalilur Rahman

A pot experiment was carried out to evaluate the influence of various organic manures on the growth performance and biomass production of Bryophyllum pinnatum. Nine kinds of organic manures, such as ACI, BGF-1, bone meal, Green life, Kazi, Majim, mustard cake, Payel and Shebok composts were applied individually at the rate of 15 ton/ha. Highest height (45.25 cm), leaf number (102.67 no./plant), leaf area (82.43 cm2/plant), number of branches (27.00 no./plant), girth (6.75 cm/plant), total fresh weight (334.02 g/plant) and total dry weight (86.09 g/plant) were recorded in mustard cake compost treatment at harvest. Results showed that the best growth performance and biomass production both were achieved by mustard cake compost treatment. Dhaka Univ. J. Biol. Sci. 29(2): 229-236, 2020 (July)


2000 ◽  
Vol 80 (3) ◽  
pp. 395-400 ◽  
Author(s):  
W. A. Rice ◽  
G. W. Clayton ◽  
P. E. Olsen ◽  
N. Z. Lupwayi

Crop production systems that include field pea (Pisum sativum L.) in rotation are important for sustainable agriculture on acid soils in northwestern Canada. Greenhouse experiments were conducted to compare the ability of liquid inoculant applied to the seed, powdered peat inoculant applied to the seed, and granular inoculant applied in a band with the seed to establish effective nodulation on field pea grown at soil pH(H2O) 4.4, 5.4 and 6.6. Plants were grown to the flat pod stage, and then total plant biomass dry weight, dry weight of nodules, number of nodules, plant nitrogen content, and proportion of plant nitrogen derived from the atmosphere (%Ndfa) were measured. Granular and powdered peat inoculants produced greater nodule numbers and weight, plant nitrogen content, %Ndfa and total biomass than liquid inoculant in at least two of the three experiments. Only granular inoculant was effective in establishing nodules at soil pH 4.4, but granular and powdered peat inoculants were effective at pH 5.4, and all three formulations were effective at pH 6.6. The results showed that granular inoculant has potential for effective nodulation of field pea grown on acid soil. Key words: Rhizobium, inoculant formulations, field pea, nodulation, acid soil


2000 ◽  
Vol 18 (2) ◽  
pp. 83-88
Author(s):  
Ursula K. Schuch ◽  
Dennis R. Pittenger ◽  
Philip A. Barker

Abstract The objectives of this study were to determine the effects of container volume, container shape, and copper-coating containers on root and shoot growth during nursery production and after establishment in the field. Liners of ficus (Ficus retusa L. ‘Nitida’), a fibrous-rooted species, and Brazilian pepper (Schinus terebinthifolius Raddi.), a coarse-rooted species, were grown in regular or tall #1 containers in a glasshouse and were subsequently transplanted to the field or into #3 or #5 regular or tall containers. During the nursery phase, copper-coated containers improved rootball quality of ficus and pepper, but biomass production was not affected consistenly by copper coating. Tall, narrow versus regular containers restricted pepper growth throughout the nursery phase and field establishment, but had little effect on ficus. Biomass production of pepper trees was greatest in regular-shaped containers, and tall containers reduced growth consistently. Container shape did not affect shoot growth of ficus. The larger container volume of the #5 yielded greater total biomass of pepper and root dry weight of ficus during nursery production than did #3 pots. In the field, shoot dry weight of ficus was greatest when previously grown in #5 containers, and total biomass of pepper was greatest in both regular #3 or #5 containers.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 633c-633
Author(s):  
C.L.H. Finneseth ◽  
Desmond R. Layne ◽  
R.L. Geneve

Little scientific information is available describing morphological development of pawpaw during seed germination. To provide this information, a study was designed to outline important developmental stages and describe seedling characteristics within each stage. Stratified pawpaw seeds were sown in vermiculite and germinated at 25°C in a growth chamber. Ten seedlings were randomly chosen and destructively harvested at 5-day intervals starting at radicle protrusion. Length (mm), fresh and dry weight, and percentage of total dry weight were determined for seedling components. Pawpaw seeds have a small rudimentary embryo with all food reserves stored in a ruminate endosperm. Dry weight measurements showed a dramatic reallocation of reserves from the storage tissue to developing seedling parts. Initial embryo length was less than 3 mm, but within 70 days seedlings exceeded 350 mm. Twelve days after planting, simultaneous radicle and cotyledon growth occurred (3.4 and 3.0 mm, respectively), but neither hypocotyl nor epicotyl was visible. Radicle protrusion was observed at 15 days with radicle, cotyledon and hypocotyl lengths increasing to 4.4, 4.0, and 3.2 mm, respectively. Endosperm comprised 99.1% of total dry weight at this stage. The hypocotyl hook emerged after 30 days and endosperm comprised 76.1% of total dry weight. Cotyledons reached maximum length (29.0 mm) at day 40 and the epicotyl was discernible. At 55 days, the seed coat containing cotyledons and residual endosperm abscised and the average radicle, hypocotyl and epicotyl lengths were 182.0, 61.1, and 7.3 mm, respectively. It is suggested that the cotyledons primary function is absorption of food reserves from the endosperm for transfer to the developing seedling.


2020 ◽  
Vol 38 (4) ◽  
pp. 853-858
Author(s):  
Dora Trejo ◽  
Jacob Bañuelos ◽  
Mayra E. Gavito ◽  
Wendy Sangabriel-Conde

A strategy to increase the productivity of pineapple agricultural systems is the excessive application of chemical fertilizers. In the state of Veracruz, Mexico, pineapple fields are being fertilized with P (180 to 240 kg ha-1) to maximize yields so that fertilizer applications keep increasing. We assessed the interaction between chemical phosphorus fertilizers, the establishment of mycorrhizal associations and biomass production of Cayenne, Champaka, and MD2 cultivars of pineapple in a greenhouse experiment. Plants were inoculated with a mycorrhizal consortium and grown with 0, 80, 200, 300, 500, and 600 mg phosphorus kg-1 soil additions in 8 kg pots for 8 months. Phosphorus reduced mycorrhizal colonization already at the lowest phosphorus fertilization dose in two of the three cultivars and became minimal for all cultivars from 200 mg P kg-1 soil. At the two highest phosphorus fertilization levels, shoot dry biomass and the dry weight of leaf D was reduced in all cultivars. The results show that the farmer´s practice of adding excessive fertilizer as an insurance principle is reaching the levels where fertilization is becoming detrimental for production and mycorrhizal benefits for the crop and the soil are being eliminated.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 551A-551
Author(s):  
Jenny Heringer Vires ◽  
Robert Anderson ◽  
Robert Geneve

Purple Coneflower [Echinacea sp. (Asteracea)] is of great value to the horticultural, pharmaceutical, and herbal industry. More research is needed to determine cultural practices that will produce a plant high in biomass and phenolic content, the chemical used for testing the quality of the harvested plant on a percent basis of roots, flowers and vegetative parts. The objective of this experiment is to determine if biomass and phenolic content of Echinacea purpurea and E. purpurea `Magnus' is influenced by fertilization after flower bud removal and vegetative pruning. The second objective of this study is to form an evaluation of the differences in biomass and phenolic content of five cultivars of E. purpurea and five species of Echinacea. Biomass and phenolic content will be evaluated to determine if exposing these plants to various treatments increases the quality of the plant over 1 and 2 years of growth. Differences in dry weights of Echinacea species and cultivars harvested after the first year of growth was determined. There was a significant difference in total dry weight between E. purpurea cultivars. Echinacea purpurea `Bright Star' and `Clio' significantly produced the most total dry weight compared to all other cultivars. There was no significant difference in root or flower biomass between cultivars. Biomass of Echinacea species was significantly different in root, vegetaive and flower parts. The total biomass of E. purpurea and E. tennesseensis was significantly higher compared to other species. Echinacea pallida and E. paradoxa were not significantly different from E. purpurea in root biomass, even though both species were small in above ground growth. Echinacea tennesseensis significantly produced 45% to 105% more flowers compared to other species. Differences in phenolic content between species and cultivars will also be presented.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Lanlan Chen ◽  
Zaibiao Zhu ◽  
Qiaosheng Guo ◽  
Jun Guo ◽  
Zhigang Huang ◽  
...  

ABSTRACT: Monochasma savatieri Franch. ex Maxim is a perennial, parasitic herb used in traditional Chinese medicine and its wild resources have decreased sharply in recent years due to destructively harvesting and habitat destruction. Haustorium formation is a key event of parasites, but the concentrations of haustorium-inducing factors vary with species and cultivation conditions. In this study, we investigated the effects of the 2,6-dimethoxy-p-benzoquinone (DMBQ) concentration and cultivation density on the growth traits, haustorium formation and biomass of M. savatieri in the absence of a host plant. The results showed that both the DMBQ concentration and cultivation density regulated growth traits, haustorium formation and biomass in M. savatieri. The number of haustoria was significantly positively correlated with seedling height, maximum root length, the number of root tips and total dry weight. Membership function analysis revealed an overall greater increase in growth traits, haustorium formation and biomass when M. savatieri was treated with 10 μmol·L-1DMBQ and grew solitarily. These results offer an understanding of growth in M. savatieri influenced by the DMBQ concentration and cultivation density, which may aid in the establishment of a comprehensive cultivation system for M. savatieri or similar plants.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 126 ◽  
Author(s):  
Pedro García-Caparros ◽  
Eva María Almansa ◽  
Francisco Javier Barbero ◽  
Rosa María Chica ◽  
María Teresa Lao

The purpose of the present study was to evaluate the effects of different light treatments on biomass, nutrient concentrations and physiological parameters of Fittonia verschaffeltii (Lem) Van Houtte. The aim was to establish a methodology to evaluate the effect of photosynthetically active radiation (PAR) emitted by lamps on biomass. The light treatments used were tube luminescent Dunn (TL-D), tube luminescent Dunn + light emitting diodes (LEDs) and Tube luminescent 5 (TL-5). At the end of the experimental period, biomass, nutritional, biochemical, and physiological parameters were assessed. A clear reduction in total plant dry weight under TL-D + LEDs at the end of the experiment was recorded. With respect to nutrient concentration in the different organs assessed, there was no clear response under the different light treatments. The growth under TL-D lamps resulted in the highest concentration of total soluble sugars and starch in leaves, whereas the highest value of indole 3-acetic acid concentration was under TL-5 lamps. Plants grown under TL-D + LEDs showed the lowest values of chlorophyll a, b and a + b. The relationship proposed between integrated use of spectral energy (IUSE) and total dry weight (TDW) showed a good correlation with an R2 value of 0.86, therefore we recommend this methodology to discern the effects of the different spectral qualities on plant biomass.


1977 ◽  
Vol 28 (1) ◽  
pp. 81 ◽  
Author(s):  
D Gramshaw ◽  
WR Stern

Annual ryegrass–subterranean clover pastures that produced about 5000 kg total dry weight per hectare and 23,500 ryegrass seed per sq metre in spring were grazed by sheep at different stocking rates during summer. Intensive stocking equivalent to about 3000 sheep days ha-1 reduced seed numbers by 20%. Under continuous grazing, about 70% of the seed produced in spring fell readily to the ground during summer. The remaining seed was firmly held in seed heads, and apparently sheep ate mainly this component. Less than 1% of the seed ingested was voided in the faeces. No significant changes in seed numbers over summer were observed in ungrazed pasture. Subsequently, at the break of season in autumn, germination of seeds was examined in situ near the soil surface. The summer grazing history of pastures influenced the percentage of seeds that germinated; more seeds germinated in heavily than in leniently grazed pastures. Whether the pasture was leniently or heavily grazed, there was little effect on germination of shed seeds. Seeds in seed heads were found to germinate more slowly than seeds shed to the soil surface. Seedling emergence in autumn was regulated mainly by the interrelationship between the germination rate of the seed population, depending on summer-early autumn rains, and the period for which favourable moisture conditions prevailed at the soil surface after rain began in autumn. In the field, temperature and light appeared to be unimportant in influencing germination at the break of season. Dynamics of seed and seedling numbers in annual ryegrass pastures in a Mediterranean type environment, particularly at the break of season, are discussed.


2020 ◽  
Vol 47 (4) ◽  
pp. 355
Author(s):  
Shek M. Hossain ◽  
Josette Masle ◽  
Andrew Easton ◽  
Malcolm N. Hunter ◽  
Ian D. Godwin ◽  
...  

Drought is a major constraint to canola production around the world. There is potential for improving crop performance in dry environments by selecting for transpiration efficiency (TE). In this work we investigated TE by studying its genetic association with carbon isotope discrimination (Δ) and other traits, e.g. specific leaf weight (SLW) and leaf chlorophyll content (SPAD). Among the 106 canola genotypes – including open-pollinated, hybrid, inbred types and cytoplasmic variants – tested in the field and glasshouse there was significant genotypic variation for TE, Δ, plant total dry weight, SLW and SPAD. Strong negative correlations were observed between TE and Δ (–0.52 to –0.76). Negative correlations between Δ and SLW or SPAD (–0.43 to –0.78) and smaller but significant positive correlations between TE and SLW or SPAD (0.23 to 0.30) suggested that photosynthetic capacity was, in part, underpinning the variation in TE. A cytoplasmic contribution to genetic variation in TE or Δ in canola was also observed with Triazine tolerant types having low TE and high Δ. This study showed that Δ has great potential for selecting canola germplasm with improved TE.


Sign in / Sign up

Export Citation Format

Share Document