scholarly journals Influence of Unsteady Flow Induced by a Large-Scale Hydropower Station on the Water Level Fluctuation of Multi-Approach Channels: A Case Study of the Three Gorges Project, China

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2922 ◽  
Author(s):  
Zhiyong Wan ◽  
Yun Li ◽  
Xiaogang Wang ◽  
Jianfeng An ◽  
Bo Dong ◽  
...  

Unsteady flow induced by hydropower stations exerts a significant impact on the water level in multi-approach channels, which directly threatens the safe passage of ships. In this study, a one-dimensional and a two-dimensional hydrodynamic model are adopted to simulate the water level fluctuations at the entrance of multi-approach channels and the lower lock head of a ship lift with consideration of initial water surface elevation, base flow, flow amplitude, regulation time, and locations of hydropower stations, unfavorable conditions are successfully identified; and the fluctuations at the approach channel entrance and the lower lock head of a ship lift under single-peak and double-peak regulating mode are analyzed considering the flow regulating of the Gezhouba Hydropower Station (GHS), thus, the water level oscillation process in the multi-approach channels is presented. Results show that the largest wave amplitude in the multi-approach channels manifests under unfavorable conditions including lower initial water surface elevation, smaller base flow, larger flow variation, and shorter regulation time; and water level fluctuation in the multi-approach channel is primarily induced by flow amplitude and net flow between the Three Gorges Hydropower Station (TGHS) and the GHS, with consideration of the counter-regulation process of the GHS. This research contributes to providing a reference for a similar large-scale cascade hydropower station regarding regulation and control of navigation conditions.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Peiyin Yuan ◽  
Pingyi Wang ◽  
Yu Zhao

The rock and soil on the shore of the bank are unsteady and slide in a poor environment, affecting the water body in the river channel and forming landslide-generated tsunamis. This directly impacts the navigation of vessels in the river. In this study, the river course and sailing ships in the Wanzhou section of the Three Gorges Reservoir area were taken as the research objects. Through a physical model test with a large scale ratio, the variation of the water level at the monitoring points in the channel was determined, and the variation law of the water level in the whole channel was derived and converted into a prototype through the scale ratio. A model of the ship’s manoeuvring motion was established, and the ship’s manoeuvring motion characteristics in still water were verified. The correlations between the maximum roll angle and the navigation position, sailing speed, and rudder angle were investigated in detail. A safety risk response theory of navigation in the area of landslide-generated tsunamis was proposed, and a scientific basis was provided for the safe navigation of ships in the Three Gorges Reservoir area.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2018 ◽  
Vol 15 (10) ◽  
pp. 2192-2206 ◽  
Author(s):  
Shu-juan Zhang ◽  
Qiang Tang ◽  
Yu-hai Bao ◽  
Xiu-bin He ◽  
Feng-xia Tian ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6110
Author(s):  
Qin Li ◽  
Xiuguo Liu ◽  
Yulong Zhong ◽  
Mengmeng Wang ◽  
Manxing Shi

As the largest hydroelectric project worldwide, previous studies indicate that the Three Gorges Dam (TGD) affects the local climate because of the changes of hydrological cycle caused by the impounding and draining of the TGD. However, previous studies do not analyze the long-term precipitation changes before and after the impoundment, and the variation characteristics of local precipitation remain elusive. In this study, we use precipitation anomaly data derived from the CN05.1 precipitation dataset between 1988 and 2017 to trace the changes of precipitation before and after the construction of the TGD (i.e., 1988–2002 and 2003–2017), in the Three Gorges Reservoir Area (TGRA). Results showed that the annual and dry season precipitation anomaly in the TGRA presented an increasing trend, and the precipitation anomaly showed a slight decrease during the flood season. After the impoundment of TGD, the precipitation concentration degree in the TGRA decreased, indicating that the precipitation became increasingly uniform, and the precipitation concentration period insignificantly increased. A resonance phenomenon between the monthly average water level and precipitation anomaly occurred in the TGRA after 2011 and showed a positive correlation. Our findings revealed the change of local precipitation characteristics before and after the impoundment of TGD and showed strong evidence that this change had a close relationship with the water level.


Sign in / Sign up

Export Citation Format

Share Document