scholarly journals Real-Time Control of the Middle Route of South-to-North Water Diversion Project

Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 97
Author(s):  
Yongyan Wu ◽  
Liqun Li ◽  
Zihui Liu ◽  
Xiaonan Chen ◽  
Huiyong Huang

Scientific and effective operation control of the Middle Route of South-to-North Water Diversion Project (MRP) is crucial to ensure water conveyance safety. As the longest water transfer project in China, its operation is confronted with unprecedented difficulties since it is controlled by a large number of check gates and diversion gates, subject to multiple constraints, and has no online regulation reservoirs. No automatic control models have been successfully put into use yet. This paper firstly introduced an expanded downstream depth operation method, and then scheduled the delivery using the volume balance principle and chartography according to the possible combination of flow change of the check gate, water volume change of the pool and flow change of diversions. Next, an improved real-time control model was established on the basis of PI controller, and the models were integrated into an automatic system for daily operation. Finally, a case study was carried out. Results showed that water level variations could be controlled within the target interval (0.25 m), and users’ demands could be met five times more rapidly. In addition, the total times of check gate operation could be reduced almost two times. The findings could promote the intelligent operation of the MRP.

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3432
Author(s):  
Margherita Altobelli ◽  
Sara Simona Cipolla ◽  
Marco Maglionico

The increase in waterproof surfaces, a typical phenomenon of urbanization, on the one hand, reduces the volume of rainwater that naturally infiltrates the subsoil and, on the other, it determines the increase in speeds, flow rates, and outflow volume surface; at the same time, it causes a qualitative deterioration of the water. This study researched the optimal management of urban drainage systems via the combined application of real-time control and green technologies. A hydraulic model of the sewer system of the suburbs of Bologna (Italy) was set up using the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) to evaluate the reduction in water volume and the masses of pollutants discharged in water bodies. The combined application of these technologies allows significantly reducing both the pollutants released into the receiving water bodies and the overflow volumes, while optimizing the operation of the treatment plants. Green technologies cause an average reduction equal to 45% in volume and 53% of total suspended solids (TSS) sent to the receiver. The modeled cases represent only some of the possible configurations achievable on urban drainage systems; the combined use of different solutions could lead to further improvements in the overall functioning of the drainage system.


2018 ◽  
Vol 246 ◽  
pp. 01039
Author(s):  
Yongyan Wu ◽  
Huiyong Huang ◽  
Qi Li ◽  
Yibo Yan

To realize demand-oriented operations in the middle route of South-to-North Water Diversion Project, this paper proposed a pool operation method that a variation interval of water level at the upstream of the check gate is allowed. In this method, water users’ demand for flow changes can be satisfied as much as possible. Accordingly, downstream water depth is kept to fluctuate within a certain range, which is determined considering the canal safety, the operation frequency of check gates and the pool delay. The method is tested using the self-developed simulation platform for the middle route of South-to-North Water Diversion Project, which is established based on the Saint-Venant equations and programmed with the language Fortran. Results show that the flow changes demanded by water users, either increase or decrease, can be achieved effectively, while the water level variations can meet the restrictions for canal operation safety, and the frequency of gate adjustment is practically acceptable as well. Therefore, the operation method of allowing variation interval of downstream water level is suitable in the middle route of South-to-North Water Diversion Project at the current stage.


2021 ◽  
Author(s):  
Zhufeng Lu

<div><p>In this work, an EEG-based control paradigm assisted by micro-facial-expressions (microFE-BCI) was developed, focusing on the mainstream defect as the insufficiency of real-time capability, asynchronous logic, and robustness. The core algorithm in microFE-BCI contained two stages (asynchronous ‘ON’ detection & microFE-BCI based real-time control) with four steps (obvious non-microFE-EEGs exclusion, interface ‘ON’ detection, microFE-EEGs real-time decoding, and validity judgment). It provided the asynchrounous function, decoded 8 instructions from the latest 100 ms EEGs, and greatly reduced the frequent misoperation. In the offline assessment, microFE-BCI achieved 96.46%±1.07 accuracy for interface ‘ON' detection and 92.68%±1.21 for microFE-EEGs real-time decoding, with the theoretical output timespan less than 200 ms. This microFE-BCI was implemented into a software, and applied to two online manipulations for evaluating the stability and agility. In object-moving with a robotic arm, the averaged IoU was 60.03±11.53%. In water-pouring with a prosthetic Hand, the averaged water volume was 202.5±7.0 ml. During online, microFE-BCI performed no significant difference (P = 0.6521 & P = 0.7931) with commercial control methods (i.e., FlexPendant and Joystick), indicating a similar level of controllability and agility. This study demonstrated the capability of microFE-BCI, enabling a novel solution to the noninvasive BCIs in real-world challenges.</p></div>


2021 ◽  
Author(s):  
Zhufeng Lu

<div><p>In this work, an EEG-based control paradigm assisted by micro-facial-expressions (microFE-BCI) was developed, focusing on the mainstream defect as the insufficiency of real-time capability, asynchronous logic, and robustness. The core algorithm in microFE-BCI contained two stages (asynchronous ‘ON’ detection & microFE-BCI based real-time control) with four steps (obvious non-microFE-EEGs exclusion, interface ‘ON’ detection, microFE-EEGs real-time decoding, and validity judgment). It provided the asynchrounous function, decoded 8 instructions from the latest 100 ms EEGs, and greatly reduced the frequent misoperation. In the offline assessment, microFE-BCI achieved 96.46%±1.07 accuracy for interface ‘ON' detection and 92.68%±1.21 for microFE-EEGs real-time decoding, with the theoretical output timespan less than 200 ms. This microFE-BCI was implemented into a software, and applied to two online manipulations for evaluating the stability and agility. In object-moving with a robotic arm, the averaged IoU was 60.03±11.53%. In water-pouring with a prosthetic Hand, the averaged water volume was 202.5±7.0 ml. During online, microFE-BCI performed no significant difference (P = 0.6521 & P = 0.7931) with commercial control methods (i.e., FlexPendant and Joystick), indicating a similar level of controllability and agility. This study demonstrated the capability of microFE-BCI, enabling a novel solution to the noninvasive BCIs in real-world challenges.</p></div>


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


Sign in / Sign up

Export Citation Format

Share Document