scholarly journals Flood Susceptibility Assessment Using Novel Ensemble of Hyperpipes and Support Vector Regression Algorithms

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Asish Saha ◽  
Subodh Chandra Pal ◽  
Alireza Arabameri ◽  
Thomas Blaschke ◽  
Somayeh Panahi ◽  
...  

Recurrent floods are one of the major global threats among people, particularly in developing countries like India, as this nation has a tropical monsoon type of climate. Therefore, flood susceptibility (FS) mapping is indeed necessary to overcome this type of natural hazard phenomena. With this in mind, we evaluated the prediction performance of FS mapping in the Koiya River basin, Eastern India. The present research work was done through preparation of a sophisticated flood inventory map; eight flood conditioning variables were selected based on the topography and hydro-climatological condition, and by applying the novel ensemble approach of hyperpipes (HP) and support vector regression (SVR) machine learning (ML) algorithms. The ensemble approach of HP-SVR was also compared with the stand-alone ML algorithms of HP and SVR. In relative importance of variables, distance to river was the most dominant factor for flood occurrences followed by rainfall, land use land cover (LULC), and normalized difference vegetation index (NDVI). The validation and accuracy assessment of FS maps was done through five popular statistical methods. The result of accuracy evaluation showed that the ensemble approach is the most optimal model (AUC = 0.915, sensitivity = 0.932, specificity = 0.902, accuracy = 0.928 and Kappa = 0.835) in FS assessment, followed by HP (AUC = 0.885) and SVR (AUC = 0.871).

Author(s):  
J. D. Mohite ◽  
S. A. Sawant ◽  
A. Pandit ◽  
S. Pappula

Abstract. The current study focuses on the estimation of cloud-free Normalized Difference Vegetation Index (NDVI) using the Synthetic Aperture Radar (SAR) observations obtained from Sentinel-1 (A and B) sensor. South-West Summer Monsoon over the Indian sub-continent lasts for four months (mid-June to mid-October). During this time, optical remote sensing observations are affected by dense cloud cover. Therefore, there is a need for methodology to estimate state of vegetation during the cloud cover. The crops considered in this study are Paddy (Rice) from Punjab and Haryana, whereas Cotton, Turmeric, and Banana from Andhra Pradesh, India. We have considered, observations of Sentinel-1 and Sentinel-2 sensors with the same overpass day and non-cloudy pixels for each crop. We used Google Earth Engine to extract surface reflectance for the Sentinel-2 and Ground Range Detected (GRD) backscatter for Sentinel-1. The Red and NIR bands of Sentinel 2 were used to estimate NDVI. Sentinel-1 based VV, and VH backscatter was used for estimation of Normalized Ratio Procedure between Bands (NRPB). Regression analysis was performed by using NDVI as an independent variable, and VV, VH, NRPB, and radar incidence angle as dependant variables. We evaluated the performance of Linear regression with tuned Support Vector Regression (SVR) as well as tuned Random Forest Regression (RFR) using the independent data. Results showed that the RFR produced the lowest RMSE for all the crops in the study. The average RMSE using the RFR was 0.08, 0.09, 0.11, and 0.10 for Rice, Cotton, Banana, and Turmeric, respectively. Similarly, we have obtained R2 values of 0.79, 0.76, 0.69, and 0.71 for the same crops using the RFR. A model with 80 trees produced the best results for Rice and Cotton, whereas the model with 90 trees produced the best results for Banana and Turmeric. Analysis with NDVI threshold of 0.25 showed improved R2 and RMSE. We found that for grown crop canopy, SAR based NDVI estimates are reasonably matching with the optical NDVI. A good agreement was observed between the actual and estimated NDVI using the tuned RFR model.


2020 ◽  
Vol 12 (19) ◽  
pp. 3170
Author(s):  
Zemeng Fan ◽  
Saibo Li ◽  
Haiyan Fang

Explicitly identifying the desertification changes and causes has been a hot issue of eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor (CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were identified by operating the classification and regression tree (CART) method with multisource remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy (85%) than three other methods, namely support vector machine (SVM), random forest (RF) and Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate change and human activities on desertification was introduced to quantitatively explicate the driving mechanisms of desertification change based on the temporal datasets and net primary productivity (NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to 948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2 to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively, in the area of desertification restoration. In general, the degree of desertification showed a decreasing trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.


2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 548 ◽  
Author(s):  
Xinpeng Tian ◽  
Zhiqiang Gao

The aim of this study is to evaluate the accuracy of MODerate resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) products over heavy aerosol loading areas. For this analysis, the Terra-MODIS Collection 6.1 (C6.1) Dark Target (DT), Deep Blue (DB) and the combined DT/DB AOD products for the years 2000–2016 are used. These products are validated using AErosol RObotic NETwork (AERONET) data from twenty-three ground sites situated in high aerosol loading areas and with available measurements at least 500 days. The results show that the numbers of collections (N) of DB and DT/DB retrievals were much higher than that of DT, which was mainly caused by unavailable retrieval of DT in bright reflecting surface and heavy pollution conditions. The percentage falling within the expected error (PWE) of the DT retrievals (45.6%) is lower than that for the DB (53.4%) and DT/DB (53.1%) retrievals. The DB retrievals have 5.3% less average overestimation, and 25.7% higher match ratio than DT/DB retrievals. It is found that the current merged aerosol algorithm will miss some cases if it is determined only on the basis of normalized difference vegetation index. As the AOD increases, the value of PWE of the three products decreases significantly; the undervaluation is suppressed, and the overestimation is aggravated. The retrieval accuracy shows distinct seasonality: the PWE is largest in autumn or winter, and smallest in summer. The most severe overestimation and underestimation occurred in the summer. Moreover, the DT, DB and DT/DB products over different land cover types still exhibit obvious deviations. In urban areas, the PWE of DB product (52.6%) is higher than for the DT/DB (46.3%) and DT (25.2%) products. The DT retrievals perform poorly over the barren or sparsely vegetated area (N = 52). However, the performance of three products is similar over vegetated area. On the whole, the DB product performs better than the DT product over the heavy aerosol loading area.


2005 ◽  
Vol 59 (6) ◽  
pp. 836-843 ◽  
Author(s):  
Jennifer Pontius ◽  
Richard Hallett ◽  
Mary Martin

Near-infrared reflectance spectroscopy was evaluated for its effectiveness at predicting pre-visual decline in eastern hemlock trees. An ASD FieldSpec Pro FR field spectroradiometer measuring 2100 contiguous 1-nm-wide channels from 350 nm to 2500 nm was used to collect spectra from fresh hemlock foliage. Full spectrum partial least squares (PLS) regression equations and reduced stepwise linear regression equations were compared. The best decline predictive model was a 6-term linear regression equation ( R2 = 0.71, RMSE = 0.591) based on: Carter Miller Stress Index (R694/R760), Derivative Chlorophyll Index (FD705/FD723), Normalized Difference Vegetation Index ((R800 – R680)/(R800 + R680)), R950, R1922, and FD1388. Accuracy assessment showed that this equation predicted an 11-class decline rating with a 1-class tolerance accuracy of 96% and differentiated healthy trees from those in very early decline with 72% accuracy. These results indicate that narrow-band sensors could be developed to detect very early stages of hemlock decline, before visual symptoms are apparent. This capability would enable land managers to identify early hemlock woolly adelgid infestations and monitor forest health over large areas of the landscape.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


Author(s):  
A. K. Nasir ◽  
M. Tharani

This research work presents the use of a low-cost Unmanned Aerial System (UAS) – GreenDrone for the monitoring of Maize crop. GreenDrone consist of a long endurance fixed wing air-frame equipped with a modified Canon camera for the calculation of Normalized Difference Vegetation Index (NDVI) and FLIR thermal camera for Water Stress Index (WSI) calculations. Several flights were conducted over the study site in order to acquire data during different phases of the crop growth. By the calculation of NDVI and NGB images we were able to identify areas with potential low yield, spatial variability in the plant counts, and irregularities in nitrogen application and water application related issues. Furthermore, some parameters which are important for the acquisition of good aerial images in order to create quality Orthomosaic image are also discussed.


Author(s):  
Zhenlei Xie ◽  
Ruoming Shi ◽  
Ling Zhu ◽  
Shu Peng ◽  
Xu Chen

Change detection method is an efficient way in the aim of land cover product updating on the basis of the existing products, and at the same time saving lots of cost and time. Considering the object-oriented change detection method for 30m resolution Landsat image, analysis of effect of different segmentation scales on the method of the object-oriented is firstly carried out. On the other hand, for analysing the effectiveness and availability of pixel-based change method, the two indices which complement each other are the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) were used. To demonstrate the performance of pixel-based and object-oriented, accuracy assessment of these two change detection results will be conducted by four indicators which include overall accuracy, omission error, commission error and Kappa coefficient.


Author(s):  
J. J. Lasquites ◽  
A. C. Blanco ◽  
A. Tamondong

Abstract. Sargassum is a brown seaweed distributed in the Philippines and recognized as an additional source of income for fishing communities. Due to uncontrolled harvesting of the seaweed, the Department of Agriculture regulated its collection and harvesting by imposing seasonal restrictions. Hence, the need to identify the locations and cover of healthy Sargassum is vital to address the demand in the market while maintaining ecological balance in the marine ecosystem. Two Sentinel-2 satellite imagery (10 m resolution) acquired on December 08, 2017 (peak growth) and May 27, 2018 (senescence stage) were used to map the presence of Sargassum in the eastern coast of Southern Leyte. Supervised classification using maximum likelihood algorithm and accuracy assessment were conducted before generating the map. Three classes were considered namely Sargassum, clouds and land. Furthermore, Anselin Local Moran’s I (cluster and outlier analysis) was conducted to determine which areas have significant clustering of “healthy” Sargassum using the normalized difference vegetation index (NDVI). For both image dates, high classification accuracies of Sargassum were obtained in the islands. However, there are misclassifications of Sargassum in Silago (UA = 78.72%) and Hinunangan (PA = 82.35%) using the May image. Furthermore, misclassification of Sargassum were obtained in Silago (PA = 93.6%) and Hinundayan (PA = 96.23%) using the December image. Clusters of high NDVI values are more evident in December. Healthy Sargassum are apparent in the coast of Silago and mostly found near shore and in rocky substrates.


Author(s):  
Zhenlei Xie ◽  
Ruoming Shi ◽  
Ling Zhu ◽  
Shu Peng ◽  
Xu Chen

Change detection method is an efficient way in the aim of land cover product updating on the basis of the existing products, and at the same time saving lots of cost and time. Considering the object-oriented change detection method for 30m resolution Landsat image, analysis of effect of different segmentation scales on the method of the object-oriented is firstly carried out. On the other hand, for analysing the effectiveness and availability of pixel-based change method, the two indices which complement each other are the differenced Normalized Difference Vegetation Index (dNDVI), the Change Vector (CV) were used. To demonstrate the performance of pixel-based and object-oriented, accuracy assessment of these two change detection results will be conducted by four indicators which include overall accuracy, omission error, commission error and Kappa coefficient.


Sign in / Sign up

Export Citation Format

Share Document