scholarly journals Preparation of PANI Modified ZnO Composites via Different Methods: Structural, Morphological and Photocatalytic Properties

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1025
Author(s):  
Nazli Turkten ◽  
Yunus Karatas ◽  
Miray Bekbolet

Polyaniline modified zinc oxide (PANI-ZnO) photocatalyst composites were synthesized by focusing on dissolution disadvantage of ZnO. In-situ chemical oxidation polymerization method was performed under neutral conditions (PANI-ES) whereas in hybridization method physical blending was applied using emeraldine base of polyaniline (PANI-EB). PANI-ZnO composites were prepared in various ratios of aniline (ANI) to ZnO as 1%, 3%, 6% and 9%. The alterations on the structural and morphological properties of PANI-ZnO composites were compared by Fourier Transform Infrared (FT-IR), Raman Spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy-Energy Dispersive X-ray Analysis Unit (SEM-EDAX) techniques. FT-IR and Raman spectroscopy confirmed the presence of PANI in all composites. SEM images revealed the morphological differences of PANI-ZnO composites based on PANI presence and preparation methods. Photocatalytic performances of PANI-ZnO specimens were investigated by following the degradation of methylene blue (MB) in aqueous medium under UVA irradiation. The effects of catalyst dose and initial dye concentration were also studied. MB degradation was followed by both decolorization extents and removal of aromatic fractions. PANI-ZnO composites expressed enhanced photocatalytic performance (~95% for both methods) as compared to sole ZnO (~87%). The hybridization method was found to be more efficient than the in-situ chemical oxidation polymerization method emphasizing the significance of the neutral medium.

2021 ◽  
Vol 16 (31) ◽  
pp. 382-401
Author(s):  
Hayder A Hasan ◽  
Khalid I Ajeel

Various treatments on the PEDOT:PSS films were carried out to investigate it’s influence on the conductivity, morphology, transmittance and the corresponding impact of the performance of the organic photovoltaic devices based on the PCPDTBT:PCBM and P3HT:PCBM blends. These processing including doping PEDOT:PSS with DMF and ME solvents and exposing these films to the vapor of DMF and ME solvents, separately. A considerable enhancement of the conductivity and transmittance of PEDOT:PSS was observed after doping solvent into the PEDOT;PSS solution followed by solvent treatment through exposing these films to solvents environment. The best organic PV doped devices based on either PCPDTBT:PCBM or based on P3HT:PCBM with power conversion efficiency were 2.93% compared to 1.87% for the pristine  PV devices or 2.79% compared to 1.77%  for the pristine devices, respectively. The conductivity improvement was highly influenced by solvent treatment.


RSC Advances ◽  
2014 ◽  
Vol 4 (96) ◽  
pp. 54134-54139 ◽  
Author(s):  
Qingtao Wang ◽  
Ruirong Li ◽  
Dong Yu ◽  
Xiaozhong Zhou ◽  
Jian Li ◽  
...  

Poly(aniline-co-pyrrole)-encapsulated Si nanoparticles composite anode material were prepared by an in situ chemical oxidation polymerization method.


2014 ◽  
Vol 70 (7) ◽  
pp. 1236-1243 ◽  
Author(s):  
Jun Chen ◽  
Xiaoqin Hong ◽  
Qingdong Xie ◽  
Diankai Li ◽  
Qianfeng Zhang

Polyaniline/sepiolite (PANI/sepiolite) nanofibers were prepared by in situ chemical oxidation polymerization in the presence of sepiolite. The effect of aniline/sepiolite weight ratio on the nanostructure of PANI/sepiolite composites was investigated by field-emission scanning electron microscopy. The adsorption of Cr(VI) onto the PANI/sepiolite nanofibers was highly dependent on pH values. The pseudo-second-order and Langmuir isothermal models can well describe the adsorption kinetics and adsorption isotherm, respectively. The maximum adsorption capacity of the PANI/sepiolite nanofibers for Cr(VI) was up to 206.6 mg/g at 25 °C and increased with the increase in temperature. Desorption experiments indicated that PANI/sepiolite can be regenerated and reused for two consecutive cycles with no loss of its removal efficiency. PANI/sepiolite nanofibers can be used as a highly efficient and economically viable adsorbent for Cr(VI) removal due to their excellent adsorption characteristics.


2017 ◽  
Vol 5 (46) ◽  
pp. 24083-24090 ◽  
Author(s):  
Hailong Lyu ◽  
Jiurong Liu ◽  
Shannon Mahurin ◽  
Sheng Dai ◽  
Zhanhu Guo ◽  
...  

Organic composite electrode materials based on aromatic polyimide (PI) and electron conductive polythiophene (PT) have been prepared by a facile in situ chemical oxidation polymerization method. The optimized composite electrode PI30PT delivers a remarkable high-rate cyclability, achieving a high capacity of 89.6 mA h g−1 at 20 C with capacity retention of 94% after 1000 cycles.


2014 ◽  
Vol 789 ◽  
pp. 183-187
Author(s):  
Yi Zheng ◽  
Shi Yan Chen ◽  
Lian Tang ◽  
Wei Li Zheng ◽  
Chuan Lu ◽  
...  

Bacterial cellulose (BC) /Polypyrrole (PPy) /TiO2 composite membrane was successfully prepared by in situ chemical oxidation polymerization of pyrrole in TiO2 sol into BC membrane matrix with different concentration of TiO2. The results of the field emission scanning electron microscopy observation revealed that the TiO2 nanoparticles coated with PPy were well homogeneously dispersed in the BC matrix. The photocatalytic activity of composite membrane was measured by methyl orange reaction model. Furthermore, the chemical structure of composite membrane and the anatase-TiO2 crystal structure were characterized by FT-IR spectroscopy and XRD analysis, respectively. According to this study, the photocatalytic activity of composite membranes was improved significantly by the addition of TiO2 due to the synergistic reaction between TiO2 and PPy. Besides that, the membrane exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to prepare the BC /PPy /TiO2 composite membrane which would have potential applications in wastewater treatment.


2021 ◽  
pp. 45-59
Author(s):  
S. K. Shakshooki ◽  
F. A. El-Akari ◽  
Najat A. Abozaid

-Type zirconium phosphate,-Zr(HPO4)2-.1.77H2O (-ZrP), crystalline cerium phosphate, Ce(HPO4)2.1.33 H2O (CePc), and [-Zr(HPO4)2]0.30 [Ce (HPO4)2]0.70 .2H2O composite were prepared and characterized by chemical, XRD, TGA, FT-IR and scanning electron microscopy(SEM). [-Zr(HPO4)2]0.30[Ce(HPO4)2]0.70/polyaniline, polyindole, polycarbazole, polyaniline-co-polyindole, polyaniline-co-polycarbazole composites were prepared via in-situ chemical oxidation of the monomers aniline, indole , carbazole, and (1:1moler ratio) of co-monomers aniline-indole, aniline- carbazole, respectively, that was promoted by the reduction of part of Ce(IV) ions present in the inorganic matrix. A possible explanation is part of CePc is attacked by the monomers, and the co-monomers, respectively, converted to cerium (III) orthophosphate (CePO4). The resultant novel composites were characterized by elemental (C,H,N) analysis, FT-IR, and (SEM). From elemental (C,H,N) analysis ,the amount of organic materials present in [-Zr(HPO4)2]0.30 [Ce (HPO4)2]0.70/ polyaniline, polyindole, polycarbazole composites were (23.44, 5.24 and 33.02 % in wt. ), respectively. The amount of resultant copolymers were (Pani 5.92, PIn 7.48 % in wt) and (Pani 1.42, PCz 2.48 % in wt ) These composites can be considered as novel conducting inorganic-organic composites, ion exchangers , solid acid catalysts and sensors.


2021 ◽  
Vol 5 (1) ◽  
pp. 293-303
Author(s):  
Qun Li ◽  
Qingze Jiao ◽  
Wei Zhou ◽  
Xueting Feng ◽  
Quan Shi ◽  
...  

Core–shell CuCo2S4@polypyrrole (CS-CuCo2S4@PPy) nanocomposites, as advanced anode materials for sodium ion batteries with outstanding cycling stability and rate capability, were prepared by a facile solvothermal strategy and subsequent in-situ chemical oxidation polymerization.


2013 ◽  
Vol 803 ◽  
pp. 153-156 ◽  
Author(s):  
Hui Xia Feng ◽  
Jiao Chen ◽  
Lin Tan ◽  
Jian Qiang Zhang

Using 1-methyl-3-alkylcarboxylic acid imidazolium chloride ([CMMICl) ionic liquid (IL) as synthetic environment, CMMIm-PANI and CMMIm-PANI@ATP composites were successfully prepared via in situ chemical oxidation polymerization. The chemical characterization of the material before and after ATP adding was performed by means of Fourier transform infrared spectroscopy (FTIR). The morphology of the coatings was observed employing scanning electron microscopy (SEM). The results are further indicated that PANI which coated on the surface of rodlike crystal ATP helped the formation of conductive path among ATP crystals which overlapped each other. The four probe conductivity apparatus was used to analyze the electronic properties of the composites. The conductivity of CMMIm-PANI@ATP and CMMIm-PANI are 10 S/cm and 1.8 S/cm respectively, which clearly showed that the introduction of ATP in composite makes the conductivity increased largely. In addition, thermogravimetric analysis shows that the thermal stability of CMMIm-PANI/ATP composites was enhanced and these can be attributed to the effect of coated ATP as barriers for the degradation of PANI.


2014 ◽  
Vol 1022 ◽  
pp. 22-25 ◽  
Author(s):  
Hong Hua Qi ◽  
Jiao Chen ◽  
Na Li Chen ◽  
Hui Xia Feng ◽  
Jian Hui Qiu

In this paper, the preparation of PANI was investigated via in secondary doping in-situ chemical oxidation polymerization. We use NH2SO3H as dopant, and HP3O4, H2SO4or HCl as secondary dopant, respectively. The influencing of products conductivity was discussed about difference secondary dopant with changing concentration. The synthesized polymer composites are characterized by Fourier Transform Infrared Spectroscopy (FTIR) and four probe conductivity apparatus. The results show that in redoping process, the conductivity of PANI was 3.1746 S/cm when the concentration of HCl was 1.0 mol/L. Meanwhile, the thermal stability of PANI prepared with HP3O4or H2SO4as secondary dopant was better than HCl as secondary dopant.


Sign in / Sign up

Export Citation Format

Share Document