scholarly journals Distribution and Geochemical Processes of Arsenic in Lake Qinghai Basin, China

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1091
Author(s):  
Yuanxin Cao ◽  
Chunye Lin ◽  
Xuan Zhang

Lake Qinghai in the Qinghai-Tibet plateau is the largest lake in China, but the geochemical understanding of arsenic (As) in the lake is lacking. Water, sediment, and soil samples were collected from Lake Qinghai, rivers flowing into the lake, and lands around the lake. Water samples were analyzed for major ions and As, while sediment and soil samples were analyzed for major elements and As. The average As concentration (25.55 μg L−1) in the lake water was significantly higher than that (1.39 μg L−1) in the river water (p < 0.05), due to the evaporative concentration of lake water. The average As concentration (107.8 μg L−1) in the pore water was significantly higher than that in the lake water, due to its secondary release from sediment solid phases in the reductive condition. The average As/Cl−, As/SO42− and As/Na molar ratios in the lake water were significantly lower than that in the river water, indicating As was partially transferred from dissolved phase to solid phase in the evaporative concentration process of the lake water. The average As/Ca molar ratio in the lake water was significantly higher than that in the river water, indicating more Ca than As precipitated in the lake water. Furthermore, the average As/Ca molar ratio in the lake water was significantly lower than that in the pore water, indicating more As than Ca was secondarily released from sediment solid phases. The average concentration of As(III) and As(V) were 0.35 and 1.04 μg L−1 for the river water, respectively, and 6.99 and 18.56 μg L−1 for the lake water, indicating As(V) was the predominant As form. The average As concentration was 16.75 mg kg−1 for the lake sediment and 13.14 mg kg−1 for the soil around the lake. Arsenic concentration was significantly negatively correlated with S and Ca concentration in the lake sediments, due to solid dilution effect induced by carbonate and sulfate precipitation. The average As/Sc molar ratio in the sediment (2.06) was significantly higher than that in the soil (1.32), indicating that relatively more As was enriched in the lake sediment.

2008 ◽  
Vol 57 (3) ◽  
pp. 551-556 ◽  
Author(s):  
Zhijun Yao ◽  
Jian Liu ◽  
He-Qing Huang ◽  
Xianfang Song ◽  
Xiaohui Dong ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 563
Author(s):  
Wiebe Förster ◽  
Jan C. Scholten ◽  
Michael Schubert ◽  
Kay Knoeller ◽  
Nikolaus Classen ◽  
...  

The eutrophic Lake Eichbaumsee, a ~1 km long and 280 m wide (maximum water depth 16 m) dredging lake southeast of Hamburg (Germany), has been treated for water quality improvements using various techniques (i.e., aeration plants, removal of dissolved phosphorous by aluminum phosphorous precipitation, and by Bentophos® (Phoslock Environmental Technologies, Sydney, Australia), adsorption) during the past ~15 years. Despite these treatments, no long-term improvement of the water quality has been observed and the lake water phosphorous content has continued to increase by e.g., ~670 kg phosphorous between autumn 2014 and autumn 2019. As no creeks or rivers drain into the lake and hydrological groundwater models do not suggest any major groundwater discharge into the lake, sources of phosphorous (and other nutrients) are unknown. We investigated the phosphorous fluxes from sediment pore water and from groundwater in the water body of the lake. Sediment pore water was extracted from sediment cores recovered by divers in August 2018 and February 2019. Diffusive phosphorous fluxes from pore water were calculated based on phosphorus gradients. Stable water isotopes (δ2H, δ18O) were measured in the lake water, in interstitial waters in the banks surrounding the lake, in the Elbe River, and in three groundwater wells close to the lake. Stable isotope (δ2H, δ18O) water mass balance models were used to compute water inflow/outflow to/from the lake. Our results revealed pore-water borne phosphorous fluxes between 0.2 mg/m2/d and 1.9 mg/m2/d. Assuming that the measured phosphorous fluxes are temporarily and spatially representative for the whole lake, about 11 kg/a to 110 kg/a of phosphorous is released from sediments. This amount is lower than the observed lake water phosphorous increase of ~344 kg between April 2018 and November 2018. Water stable isotope (δ2H, δ18O) compositions indicate a water exchange between an aquifer and the lake water. Based on stable isotope mass balances we estimated an inflow of phosphorous from the aquifer to the lake of between ~150 kg/a and ~390 kg/a. This result suggests that groundwater-borne phosphorous is a significant phosphorous source for the Eichbaumsee and highlights the importance of groundwater for lake water phosphorous balances.


1971 ◽  
Vol 8 (2) ◽  
pp. 341-345 ◽  
Author(s):  
R. J. Mitchell ◽  
K. N. Burn

Two systems are described for electronic recording of changes in the volume of pore water for triaxial testing of soils: one using a miniature force transducer to measure by direct weighing; the other based upon a float system connected to the core of a differential transformer. Both systems provide measurement of volume change at least as accurately as may be obtained by visual reading of burettes graduated to 0.1 cm3, i.e. to ± 0.05 cm3.


Chemosphere ◽  
2020 ◽  
Vol 259 ◽  
pp. 127489
Author(s):  
Qiugui Wang ◽  
Zhanjiang Sha ◽  
Jinlong Wang ◽  
Qiangqiang Zhong ◽  
Penggao Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document