scholarly journals Formula alters preterm infant gut microbiota and increases its antibiotic resistance load

2019 ◽  
Author(s):  
Katariina Pärnänen ◽  
Jenni Hultman ◽  
Reetta Satokari ◽  
Samuli Rautava ◽  
Regina Lamendella ◽  
...  

SummaryInfants are at a high risk of acquiring infections caused by antibiotic resistant bacterial strains. Antibiotic resistance gene (ARG) load is typically higher in newborns than in adults, but it is unknown which factors besides antibiotic treatment affect the load. Our study demonstrates that inclusion of any formula in the newborn diet causes shifts in microbial community composition that result in higher ARG loads in formula-fed infants compared to infants not fed formula. The effect of formula was especially strong in premature newborns and newborns treated with antibiotics. Interestingly, antibiotics alone without formula did not have a detectable impact on the ARG load of the newborn gut. We also observed that formula-fed infants had enriched numbers of pathogenic species and were depleted in typical infant gut species such as Bifidobacterium bifidum. The results suggest infant feeding choices should include assessment of risks associated with elevated ARG abundance.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1262
Author(s):  
Jasmin Rauseo ◽  
Anna Barra Caracciolo ◽  
Francesca Spataro ◽  
Andrea Visca ◽  
Nicoletta Ademollo ◽  
...  

Diffuse environmental antibiotic and antibiotic resistance gene contamination is increasing human and animal exposure to these emerging compounds with a consequent risk of reduction in antibiotic effectiveness. The present work investigated the effect of the antibiotic sulfamethoxazole (SMX) on growth and antibiotic resistance genes of a microbial community collected from an anaerobic digestion plant fed with cattle manure. Digestate samples were used as inoculum for concentration-dependent experiments using SMX at various concentrations. The antibiotic concentrations affecting the mixed microbial community in terms of growth and spread of resistant genes (sul1, sul2) were investigated through OD (Optical Density) measures and qPCR assays. Moreover, SMX biodegradation was assessed by LC-MS/MS analysis. The overall results showed that SMX concentrations in the range of those found in the environment did not affect the microbial community growth and did not select for antibiotic-resistant gene (ARG) maintenance or spread. Furthermore, the microorganisms tested were able to degrade SMX in only 24 h. This study confirms the complexity of antibiotic resistance spread in real matrices where different microorganisms coexist and suggests that antibiotic biodegradation needs to be included for fully understanding the resistance phenomena among bacteria.


2017 ◽  
Vol 1 (S1) ◽  
pp. 35-35
Author(s):  
Amy Elizabeth Langdon ◽  
Christopher Bulow ◽  
Kim Reske ◽  
Sherry Sun ◽  
Tiffany Hink ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Clostridium difficile is the most common cause of infectious antibiotic associated diarrhea. It is often refractory to antimicrobial therapy and fecal microbiota transplantation (FMT) is emerging as a therapeutic option. The objective is to characterize the direct effects of FMT on the gut microbiota. METHODS/STUDY POPULATION: Fecal specimens were obtained from a cohort of 29 subjects with recurrent C. difficile infection who received FMTs from 1 of 4 healthy donors as part of a phase 2 trial (Rebiotix). Fecal specimens were collected from the subject before FMT and up to 6 months post FMT. 16S rRNA sequencing and whole-genome shotgun sequencing were used to assess microbial community composition as compared by weighted Unifrac. RESULTS/ANTICIPATED RESULTS: Before treatment, the microbial community of subjects with C. difficile infection was highly distinct from the composition of the healthy donors in terms of metabolic profile. Quantification of phylogenetic community distance from donor by weighted Unifrac distance showed a significant decrease within the 1st week (Wilcoxon rank sum, p<0.01). This metric was predictive of both treatment failures and antibiotic resistance gene count (LR=22.45, p<0.0001). DISCUSSION/SIGNIFICANCE OF IMPACT: We conclude that distance from donor is a useful metric to quantify FMT success and that FMTs are a promising treatment for otherwise untreatable carriage of antibiotic resistance genes and organisms.


2020 ◽  
Vol 81 (12) ◽  
pp. 2501-2510
Author(s):  
Jing Wang ◽  
Jiti Zhou

Abstract The exploitation of petroleum in offshore areas is becoming more prosperous due to the increasing human demand for oil. However, the effects of offshore petroleum exploitation on the microbial community in the surrounding environment are still not adequately understood. In the present study, variations in the composition, function, and antibiotic resistance of the microbial community in marine sediments adjacent to an offshore petroleum exploitation platform were analyzed by a metagenomics-based method. Significant shifts in the microbial community composition were observed in sediments impacted by offshore petroleum exploitation. Nitrosopumilales was enriched in marine sediments with the activities of offshore petroleum exploitation compared to the control sediments. The abundances of function genes involved in carbon, butanoate, methane, and fatty acid metabolism in sediment microbial communities also increased due to the offshore petroleum exploitation. Offshore petroleum exploitation resulted in the propagation of some antibiotic resistance genes (ARGs), including a multidrug transporter, smeE, and arnA, in marine sediments via horizontal gene transfer mediated by class I integrons. However, the total abundance and diversity of ARGs in marine sediments were not significantly affected by offshore petroleum exploitation. This study is the first attempt to analyze the impact of offshore petroleum exploitation on the spread of antibiotic resistance.


2020 ◽  
Vol 22 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Jingyu Wang ◽  
Minghao Sui ◽  
Hongwei Li ◽  
Bojie Yuan

Ultraviolet disinfection could effectively inactivate the antibiotic resistant bacterium vancomycin resistant Enterococcus faecalis, but had a limited removal efficiency for the antibiotic resistance gene–vanB gene.


2020 ◽  
Vol 22 (5) ◽  
pp. 1110-1124 ◽  
Author(s):  
Colin J. Cunningham ◽  
Maria S. Kuyukina ◽  
Irena B. Ivshina ◽  
Alexandr I. Konev ◽  
Tatyana A. Peshkur ◽  
...  

The problems associated with potential risks of antibiotic resistance spreading during bioremediation of oil-contaminated soil are discussed. Careful selection of bacterial strains and pretreatment of organic wastes used as fertilizers are suggested.


2019 ◽  
Vol 25 (16) ◽  
pp. 1861-1865 ◽  
Author(s):  
Naira Sahakyan ◽  
Margarit Petrosyan ◽  
Armen Trchounian

Overcoming the antibiotic resistance is nowadays a challenge. There is still no clear strategy to combat this problem. Therefore, the urgent need to find new sources of antibacterial agents exists. According to some literature, substances of plant origin are able to overcome bacterial resistance against antibiotics. Alkanna species plants are among the valuable producers of these metabolites. But there is a problem of obtaining the standardized product. So, this review is focused on the discussion of the possibilities of biotechnological production of antimicrobial agents from Alkanna genus species against some microorganisms including antibiotic resistant bacterial strains.


2021 ◽  
Author(s):  
Dongmei Xu ◽  
Hongyan Han ◽  
Chao Wang ◽  
Yixin Zhang ◽  
Fuhou Li ◽  
...  

Abstract Background: The emergence and spread of antibiotic resistance are a significant threat to global health. Silage is a major forage feed for ruminants, and its safety is an important guarantee that high-quality ruminant products will remain available to humans. However, little attention has been given to the silage resistome. To define the antibiotic resistome and its potential risk to silage from different climate zones and in response to the ensiling process, this study used metagenomics to investigate bacterial communities and the type and amount of antibiotic resistance gene (ARG) in corn silage harvested from six climate zones (Cfa, BWk, Dwc, Dwa, BSk, and Aw based on Köppen-Geiger climate classification) in China. Results: The composition and succession of silage bacterial communities varied significantly between different climate zones. Lactobacillus was the predominant bacteria during corn ensiling. A total of 134 ARGs were observed in corn silage, with the dominant classes being beta-lactamase and multidrug resistance and the primary mechanisms being efflux pump, inactivation, and target protection. Differences in the resistome were mainly attributed to disparities in microbial composition, which was indirectly affected by climatic factors and fermentation pH. ARG abundance was lower in 90-day silages than 5-day silages except in Hainan silage. The diversity and relative abundance (0.65-0.4% based on total gene number) of ARGs was lower in silage microbiota from Tibet than other climate zones. The dominant ARGs were tetM, oqxB, lmrD, lnuA, ermB, and tetS, and Enterobacter, Klebsiella, Staphylococcus, Lactobacillus and Lactococcus were the primary ARG hosts. Eleven high-risk ARGs were chosen to evaluate the pollution level of silages harvested from different climate zones. The highest relative abundance of high-risk ARGs belonging to Lactobacillus occurred in corn silages from Cfa, Dwa and BWk climate zones. Conclusions: The ensiling process decreased ARG abundance. While resistome contamination of silage from Tibet was relatively low, ARGs with high risk were abundant in silages from Cfa, Dwa and BWk climate zones.


2021 ◽  
pp. 111-116
Author(s):  
Thomas E. Schindler

This chapter reviews how bacterial sex explains the rapid emergence of superbugs that are resistant to multiple antibiotics, the so-called MDR pathogens. Millions of years before humans evolved, bacteria invented antibiotics and the defensive molecules that make some bacteria resistant to an antibiotic. Therefore, antibiotic resistant genes pre-exist in many bacterial strains, literally lying in wait to emerge in superbugs. In postwar Japan, bacteriologists discovered the first MDR pathogens during dysentery outbreaks. Researchers demonstrated that the genes for resistance to several antibiotics were transferred by bacterial sex—from normal flora to the dysentery pathogens—all together and “at one stroke.” Methicillin was intentionally designed to treat penicillin-resistant infections. Only three years after its introduction of, hospitals began to find methicillin-resistant Staphylococcus aureus (MRSA). Gerard Wright coined the term resistome to signify “the global collection of resistance genes that have been readily available to pathogens for millennia.”


Sign in / Sign up

Export Citation Format

Share Document