scholarly journals Visible-Light-Driven Bio-Templated Magnetic Copper Oxide Composite for Heterogeneous Photo-Fenton Degradation of Tetracycline

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1918
Author(s):  
Olushola Adewole Alani ◽  
Hadiza Abdullahi Ari ◽  
Susanna Olushola Alani ◽  
Nnanake-Abasi O. Offiong ◽  
Wei Feng

The development of a visible-light-driven, reusable, and long-lasting catalyst for the heterogeneous photo-Fenton process is critical for practical application in the treatment of contaminated water. This study focuses on synthesizing a visible-light-driven heterogenous bio-templated magnetic copper oxide composite (Fe3O4/CuO/C) by a two-step process of bio-templating and hydrothermal processes. The prepared composite was characterized by field emission-scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrical impedance spectroscopy (EIS), and vibrating sample magnetometer (VSM). The results reveal that the prepared composite retains the template’s (corn stalk’s) original porous morphology, and a substantial amount of CuO and Fe3O4 particles are loaded onto the surface of the template. The prepared Fe3O4/CuO/C composite was employed as a catalyst for heterogeneous photo-Fenton degradation of tetracycline (TC) irradiated by visible light. The prepared Fe3O4/CuO/C catalyst has high efficiency towards TC degradation within 60 min across a wide pH range irradiated by visible light, which is attributed to its readily available interfacial boundaries, which significantly improves the movement of photoexcited electrons across various components of the prepared composite. The influence of other parameters such as initial H2O2 concentration, initial concentration of TC, and catalyst dosages was also studied. In addition to high efficiency, the prepared catalyst’s performance was sustained after five cycles, and its recovery is aided by the use of an external magnetic field. This research paper highlights the development of a heterogeneous catalyst for the elimination of refractory organic compounds in wastewater.

Author(s):  
Md Ataur Rahman ◽  
Tajmeri S.A. Islam

Copper oxide composite was prepared from copper (II) acetate. Characterization of composite was performed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), FT-IR Spectroscopy and X-ray diffractometry. According to the findings of SEM the particle size was within the range from 450 nm to 550 nm. Band gap energy was determined by reflectance measurement and value was found to be 4.21 eV. From the result of EDS, it appears that the composite contains only Cu and O atoms. Result of XRD confirms that the composite contains CuO, Cu2O and metallic Cu. FTIR spectrum of composite supports the presence of Cu2O. Adsorptive and catalytic properties of composite were studied using Methylene blue as adsorbent. Photo-oxidative degradation of MB was investigated in the suspension of composite in separate experiments at different pH ranging from 2.5 to 5.5 under visible light. Low pH range from 2.5 to 3.5 is most effective for degradation. This was explained by proposing a cyclic mechanism which suggests the conversion of Cu22+ to Cu2+ and vice versa. 95.5% of MB was found to degrade when 5×10-5 M solution of MB was irradiated for three hours in 100 mL suspension of composite having concentration 1gL-1 at pH 2.5.


Author(s):  
Cheng Cheng ◽  
Dongyun Chen ◽  
Najun Li ◽  
Hua Li ◽  
Qingfeng Xu ◽  
...  

A hollow constructed photocatalyst, In2S3/CdIn2S4, was synthesized for visible-light-driven Cr(vi) reduction.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Beibei Zhang ◽  
Lu Zhang ◽  
Yulong Zhang ◽  
Chao Liu ◽  
Jiexiang Xia ◽  
...  

In this work, a simple chemical precipitation method was employed to prepare spherical-like Ag3PO4 material (IL-Ag3PO4) with exposed {111} facet in the presence of reactive ionic liquid 1-butyl-3-methylimidazole dihydrogen phosphate ([Omim]H2PO4). The crystal structure, microstructure, optical properties, and visible-light photocatalytic performance of as-prepared materials were studied in detail. The addition of ionic liquids played a crucial role in forming spherical-like morphology of IL-Ag3PO4 sample. Compared with traditional Ag3PO4 material, the intensity ratio of {222}/{200} facets in XRD pattern of IL-Ag3PO4 was significantly enhanced, indicating the main {111} facets exposed on the surface of IL-Ag3PO4 sample. The presence of exposed {111} facet was advantageous for facilitating the charge carrier transfer and separation. The light-harvesting capacity of IL-Ag3PO4 was larger than that of Ag3PO4. The photocatalytic activity of samples was evaluated by degrading rhodamine B (RhB) and p-chlorophenol (4-CP) under visible light. The photodegradation efficiencies of IL-Ag3PO4 were 1.94 and 2.45 times higher than that of Ag3PO4 for RhB and 4-CP removal, respectively, attributing to a synergy from the exposed {111} facet and enhanced photoabsorption. Based on active species capturing experiments, holes (h+), and superoxide radical (•O2−) were the main active species for visible-light-driven RhB photodegradation. This study will provide a promising prospect for designing and synthesizing ionic liquid-assisted photocatalysts with a high efficiency.


2021 ◽  
Author(s):  
Luqiu Li ◽  
Dongguang Yin ◽  
Xiandi Guo

Covalent organic frameworks (COFs) representing an emerging class of porous crystalline material have shown promising visible-light-driven hydrogen evolution activity. However, they have a high recombination ratio of charge carriers and...


2021 ◽  
Author(s):  
Jingjing Guo ◽  
Wei Zhao ◽  
Dezhi Xiong ◽  
Yao Ye ◽  
Shibo Li ◽  
...  

High-efficiency sunlight energy usage and low carrier recombination are of the most significant attentions to explore novel photocatalyst candidates. Herein the BiOCl nanosheets showing various (001)/(102) facet ratios were synthesized...


2020 ◽  
Vol 8 ◽  
Author(s):  
Liqing Li ◽  
Lin Yang ◽  
Fangxu Li

A novel collector of 1-(2-hydroxyphenyl) dec-2-en-1-one oxime (HPDO) was synthesized from 2-hydroxy acetophenone and octanal, and its flotation and adsorption behavior for malachite were studied by flotation tests and x-ray photoelectron spectroscopy (XPS) analysis. The flotation results of a single mineral show HPDO is a special collector for malachite. Compared with benzohydroxamic acid (BHA), isobutyl xanthate (SIBX), and dodecylamine (DA), HPDO exhibits excellent flotation performance for malachite and satisfied selectivity against quartz and calcite over a wide pH range. The HPDO with a concentration of 200 mg/L can float 94% malachite at pH 8, while only recovering 7.8% quartz and 28% calcite. XPS data give clear evidence for the formation of a Cu-oxime complex on malachite surfaces after HPDO adsorption.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2720
Author(s):  
Ting Liang ◽  
Lianfang Li ◽  
Changxiong Zhu ◽  
Xue Liu ◽  
Hongna Li ◽  
...  

Arsenic has become a global concern in water environment, and it is essential to develop efficient remediation methods. In this study, a novel adsorbent by loading cerium and manganese oxide onto wheat straw-modified biochar (MBC) was manufactured successfully aiming to remove arsenic from polluted water. Through scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR), and other techniques, it was found the loading of cerium and manganese oxide on MBC played a significant role in As(V) adsorption. The results of the batch test showed that the adsorption of MBC followed the pseudo-second order kinetics and Langmuir equation. The adsorption capacity of MBC was 108.88 mg As(V)/g at pH = 5.0 (C0 = 100 mg/L, dosage = 0.5 g/L, T = 298 K) with considerable improvement compared to the original biochar. Moreover, MBC exhibited excellent performance over a wide pH range (2.0~11.0). Thermodynamics of the sorption reaction showed that the entropy (ΔS), changes of enthalpy (ΔH) and Gibbs free energy (ΔG), respectively, were 85.88 J/(moL·K), 22.54 kJ/mol and −1.33 to −5.20 kJ/mol at T = 278~323 K. During the adsorption, the formation of multiple complexes under the influence of its abundant surface M-OH (M represents the Ce/Mn) groups involving multiple mechanisms that included electrostatic interaction forces, surface adsorption, redox reaction, and surface complexation. This study indicated that MBC is a promising adsorbent to remove As(V) from polluted water and has great potential in remediating of arsenic contaminated environment.


2019 ◽  
Vol 43 (48) ◽  
pp. 19172-19179
Author(s):  
Hong-ji Ren ◽  
Yu-bin Tang ◽  
Wei-long Shi ◽  
Fang-yan Chen ◽  
Yu-song Xu

The red mud/graphene oxide composite photocatalysts with enhanced photocatalytic activity were prepared through a simple ultrasonic mixing method.


2020 ◽  
Vol 6 (12) ◽  
pp. 125558
Author(s):  
Xuewang Zhu ◽  
Yaxin Shi ◽  
Qingzhi Luo ◽  
Jing An ◽  
Rong Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document