scholarly journals Climate and Land Use Change Effects on Sediment Production in a Dry Tropical Forest Catchment

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2233
Author(s):  
Juan Pablo García Montoya ◽  
Juan Vicente Giraldez Cervera ◽  
Tom Vanwalleghem

Understanding the natural and anthropogenic drivers that influence erosion and sediment transport is a key prerequisite for adequate management of river basins, where, especially in tropical catchments, there are few direct measurements or modeling studies. Therefore, this study analyzed the effect of human-induced land-use changes and natural ENSO (El Niño-Southern Oscillation) related changes in rainfall patterns on soil erosion and catchment-scale sediment dynamics with the SEDD (Sediment Delivery Distributed) model. In the 393 km2 Tonusco river basin, representative of tropical, mountainous conditions, daily rainfall data were used to quantify changes in rainfall erosivity and satellite images for the evaluation of cover factor changes between 1977 and 2015. The final model combined soil loss, calculated by RUSLE, with a sediment routing-based delivery ratio, that was calibrated and validated with data from the sediment load recorded at the basin outlet. The results detected a great reduction of the vegetation cover in the catchment during the last decade of from 79.5 to 29.5%, and the influence of important runoff and erosion events linked to La Niña episodes. Soil erosion rates were locally very high, of over 120 Mg ha−1yr−1, and sediment yields were estimated at the range of 6.17–8.23 Mg ha−1yr−1.

2019 ◽  
Author(s):  
Abreham Berta Aneseyee

Abstract Background: Information on soil loss and sediment export is essential to identify hotspots of soil erosion for conservation interventions in a given watershed. This study aims at investigating the dynamic of soil loss and sediment export associated with land use/land cover change and identifies soil loss hotspot areas in Winike watershed of Omo-gibe basin of Ethiopia. Spatial data collected from satellite images, topographic maps, meteorological and soil data were analyzed. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) of sediment delivery ratio (SDR) model was used based on analysis of land use/land cover maps and RUSLE factors. Result: The results showed that total soil loss increased from 774.86 thousand tons in 1988 to 951.21 thousand tons in 2018 while the corresponding sediment export increased by 3.85 thousand tons in the same period. These were subsequently investigated in each land-use type. Cultivated fields generated the highest soil erosion rate, which increased by 10.02 t/ha/year in 1988 to 43.48 t/ha/year in 2018. This corresponds with the expansion of the cultivated area that increased from 44.95 thousand ha in 1988 to 59.79 thousand ha in 2018. This is logical as the correlation between soil loss and sediment delivery and expansion of cultivated area is highly significant (p<0.01). Sub-watershed six (SW-6) generated the highest soil loss (62.77 t/ha/year) and sediment export 16.69 t/ha/year, followed by Sub-watershed ten (SW-10) that are situated in the upland plateau. Conversely, the lower reaches of the watershed are under dense vegetation cover and experiencing less erosion. Conclusion: Overall, the changes in land use/land cover affect significantly the soil erosion and sediment export dynamism. This research is used to identify an area to prioritize the watershed for immediate management practices. Thus, land use policy measures need to be enforced to protect the hydropower generation dams at downstream and the ecosystem at the watershed.


Author(s):  
Yao Luo ◽  
Hongya Wang ◽  
Jeroen Meersmans ◽  
Sophie M. Green ◽  
Timothy A. Quine ◽  
...  

The Guizhou Plateau, SW China is largely underlain by carbonate rocks. Because soils are thin, soil loss remains a serious problem despite low erosion rates. Further understanding the impacts of changes in rainfall, land use and differences in topography on sediment yield and delivery may assist in the development of suitable policies to reduce soil erosion on the plateau. A spatially distributed soil erosion and sediment delivery model (WaTEM/SEDEM) was applied to investigate temporal–spatial changes in soil erosion between 1985 and 2014 in three watersheds (Dadukou (DDK), Caopingtou (CPT) and Gaoche (GC)) located in the southwest Guizhou Plateau. The WaTEM/SEDEM model was calibrated and validated using data on sediment yields measured at the watershed scale. The total sediment yield (SY) and soil erosion modulus (SEM) firstly decreased followed by an increase, whereas the sediment delivery ratio (SDR) remained almost unchanged over the 30-year period. The major sediment source was dry farmlands. SY was the highest in the largest DDK watershed. The highest SEM occurred in the CPT watershed due to steep terrain and high ratio of dry farmland areas on steeper slopes. SEM was the lowest in the GC watershed where slope gradient and ratio of dry farmland on steeper slopes are low. SDR was the highest in the GC watershed because of its topographic characteristics. SEM was sensitive to precipitation fluctuations in the GC, DDK and particularly in the steep and intensively eroded CPT watershed, while changes in dry farmland ratio influenced the SEM in the CPT and DDK watersheds but not in the gentle and mildly eroded GC watershed. Changes in forest ratio had significant impacts on SEM only in the GC watershed. Since responses of soil erosion to variations or differences in the main impact factors differ in the different watersheds, soil conservation strategies should be watershed specific.


2014 ◽  
Vol 81 (1) ◽  
pp. 15-20 ◽  
Author(s):  
David R. Montgomery ◽  
Michelle Y.-F. Huang ◽  
Alice Y.-L. Huang

AbstractReservoir sedimentation data and sediment yields from Taiwanese rivers show increased soil erosion in response to both 20th century changes in land use and a more recent increase in typhoon frequency and intensity. Decadal variations of up to 5- to 20-fold in suspended-sediment rating curves demonstrate supply-limited transport and correspond to increased sediment delivery from hillslopes due to changes in land use, regional ground shaking during the Chi-Chi earthquake, and post-2000 changes in typhoon frequency and intensity. While accelerated erosion in central Taiwan after the Chi-Chi earthquake has been documented previously, our results show that periods of increased upland erosion also occurred earlier, in response to 20th century changes in land use. Analyses of rainfall records and typhoon frequency for the period 1900–2009 further point to an island-wide increase in erosion rates corresponding to increased typhoon frequency and intensity after 1990.


2007 ◽  
Author(s):  
Ki-Sung Kim ◽  
Kyoung Jae Lim ◽  
Joongdae Choi ◽  
Bernie Engel ◽  
Ji-Hong Jeon ◽  
...  

Author(s):  
Vito Ferro

Beyond damage to rainfed agricultural and forestry ecosystems, soil erosion due to water affects surrounding environments. Large amounts of eroded soil are deposited in streams, lakes, and other ecosystems. The most costly off-site damages occur when eroded particles, transported along the hillslopes of a basin, arrive at the river network or are deposited in lakes. The negative effects of soil erosion include water pollution and siltation, organic matter loss, nutrient loss, and reduction in water storage capacity. Sediment deposition raises the bottom of waterways, making them more prone to overflowing and flooding. Sediments contaminate water ecosystems with soil particles and the fertilizer and pesticide chemicals they contain. Siltation of reservoirs and dams reduces water storage, increases the maintenance cost of dams, and shortens the lifetime of reservoirs. Sediment yield is the quantity of transported sediments, in a given time interval, from eroding sources through the hillslopes and river network to a basin outlet. Chemicals can also be transported together with the eroded sediments. Sediment deposition inside a reservoir reduces the water storage of a dam. The prediction of sediment yield can be carried out by coupling an erosion model with a mathematical operator which expresses the sediment transport efficiency of the hillslopes and the channel network. The sediment lag between sediment yield and erosion can be simply represented by the sediment delivery ratio, which can be calculated at the outlet of the considered basin, or by using a distributed approach. The former procedure couples the evaluation of basin soil loss with an estimate of the sediment delivery ratio SDRW for the whole watershed. The latter procedure requires that the watershed be discretized into morphological units, areas having a constant steepness and a clearly defined length, for which the corresponding sediment delivery ratio is calculated. When rainfall reaches the surface horizon of the soil, some pollutants are desorbed and go into solution while others remain adsorbed and move with soil particles. The spatial distribution of the loading of nitrogen, phosphorous, and total organic carbon can be deduced using the spatial distribution of sediment yield and the pollutant content measured on soil samples. The enrichment concept is applied to clay, organic matter, and all pollutants adsorbed by soil particles, such as nitrogen and phosphorous. Knowledge of both the rate and pattern of sediment deposition in a reservoir is required to establish the remedial strategies which may be practicable. Repeated reservoir capacity surveys are used to determine the total volume occupied by sediment, the sedimentation pattern, and the shift in the stage-area and stage-storage curves. By converting the sedimentation volume to sediment mass, on the basis of estimated or measured bulk density, and correcting for trap efficiency, the sediment yield from the basin can be computed.


2019 ◽  
Vol 11 (24) ◽  
pp. 7053 ◽  
Author(s):  
Carina Colman ◽  
Paulo Oliveira ◽  
André Almagro ◽  
Britaldo Soares-Filho ◽  
Dulce Rodrigues

The Pantanal biome integrates the lowlands of the Upper Paraguay Basin (UPB), which is hydrologically connected to the biomes of the Cerrado and Amazon (the highlands of the UPB). The effects of recent land-cover and land-use (LCLU) changes in the highlands, combined with climate change, are still poorly understood in this region. Here, we investigate the effects of soil erosion in the Brazilian Pantanal under climate and LCLU changes by combining different scenarios of projected rainfall erosivity and land-cover management. We compute the average annual soil erosion for the baseline (2012) and projected scenarios for 2020, 2035, and 2050. For the worst scenario, we noted an increase in soil loss of up to 100% from 2012 to 2050, associated with cropland expansion in some parts of the highlands. Furthermore, for the same period, our results indicated an increase of 20 to 40% in soil loss in parts of the Pantanal biome, which was associated with farmland increase (mainly for livestock) in the lowlands. Therefore, to ensure water, food, energy, and ecosystem service security over the next decades in the whole UPB, robust and comprehensive planning measures need to be developed, especially for the most impacted areas found in our study.


2018 ◽  
Vol 192 ◽  
pp. 02040 ◽  
Author(s):  
Kieu Anh Nguyen ◽  
Walter Chen

Nowadays, the storage capacity of a reservoir reduced by sediment deposition is a concern of many countries in the world. Therefore, understanding the soil erosion and transportation process is a significant matter, which helps to manage and prevent sediments entering the reservoir. The main objective of this study is to examine the sediments reaching the outlet of a basin by empirical sediment delivery ratio (SDR) equations and the gross soil erosion. The Shihmen reservoir watershed is used as the study area. Because steep terrain is a characteristic feature of the study area, two SDR models that depend on the slope of the mainstream channel and the relief-length ratio of the watershed are chosen. It is found that the Maner (1958) model, which uses the relief-length ratio, is the better model of the two. We believe that this empirical research improves our understanding of the sediment delivery process occurring in the study area.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2306 ◽  
Author(s):  
Nazzareno Diodato ◽  
Gianni Bellocchi

In the low Mediterranean basin, late spring and autumn rainfall events have the potential to increase discharge and transport substantial amounts of sediment soil (that is, the net soil erosion from a watershed). For the Alento River Basin (ARB), located in the low Tyrrhenian coast of Italy, we estimated changes of net erosion as dependent on the seasonality of antecedent soil moisture and its control on rainfall-runoff and erosivity. Based on rainfall and runoff erosivity sub-models, we developed a simplified model to evaluate basin-wide sediment yields on a monthly basis by upscaling point rainfall input. For the period 1951–2018, the reconstruction of a time series of monthly net erosion data indicated a decreasing trend of the sediment yield after 1991. Revegetation and land abandonment that occurred in the last decades can explain such a decrease of net erosion, which occurred even when rainfall erosivity increased. This response, obtained at the basic scale, does not exclude that rapidly developing mesoscale convective systems, typically responsible for the heaviest and most destructive rainfall events in the ARB, can affect small catchments, which are the most vulnerable systems to storm-driven flash floods and soil erosion hazards during soil tilling in spring and at beginning of autumn.


2012 ◽  
Vol 16 (5) ◽  
pp. 1321-1334 ◽  
Author(s):  
L. C. Alatorre ◽  
S. Beguería ◽  
N. Lana-Renault ◽  
A. Navas ◽  
J. M. García-Ruiz

Abstract. Soil erosion and sediment yield are strongly affected by land use/land cover (LULC). Spatially distributed erosion models are of great interest to assess the expected effect of LULC changes on soil erosion and sediment yield. However, they can only be applied if spatially distributed data is available for their calibration. In this study the soil erosion and sediment delivery model WATEM/SEDEM was applied to a small (2.84 km2) experimental catchment in the Central Spanish Pyrenees. Model calibration was performed based on a dataset of soil redistribution rates derived from point 137Cs inventories, allowing capture differences per land use in the main model parameters. Model calibration showed a good convergence to a global optimum in the parameter space, which was not possible to attain if only external (not spatially distributed) sediment yield data were available. Validation of the model results against seven years of recorded sediment yield at the catchment outlet was satisfactory. Two LULC scenarios were then modeled to reproduce land use at the beginning of the twentieth century and a hypothetic future scenario, and to compare the simulation results to the current LULC situation. The results show a reduction of about one order of magnitude in gross erosion (3180 to 350 Mg yr−1) and sediment delivery (11.2 to 1.2 Mg yr−1 ha−1) during the last decades as a result of the abandonment of traditional land uses (mostly agriculture) and subsequent vegetation recolonization. The simulation also allowed assessing differences in the sediment sources and sinks within the catchment.


1992 ◽  
Vol 72 (4) ◽  
pp. 543-554 ◽  
Author(s):  
Claude Bernard ◽  
Marc R. Laverdière

Cs-137 redistribution data have been used to estimate the extent and the pattern of long-term soil erosion in the Québec City area. Mean annual net soil movements ranging from a deposition of 10.8 t ha−1 yr−1 to a loss of 31.8 t ha−1 yr−1 were estimated. The slope steepness and the land use significantly influenced the estimated rates of soil movement, while soil texture was less important, probably because of the soils’ sandy texture or the high content of organic carbon, which kept their erodibility low. The net soil losses estimated from Cs-137 data were consistently higher than those predicted by the USLE. Besides net soil losses, it was possible to estimate separately the magnitude of soil detachment and soil deposition. Two–thirds of the stations sampled experienced net soil loss while the remaining third showed evidence of soil accumulation. These data suggest that the small net soil losses measured for low erosive conditions (flat slopes, dairy farming) result from important soil redeposition rates as much as from small soil detachment rates. Cs-137 redistribution data not only produce reliable estimates of soil movement rates, but also allow enhanced estimates of the agronomic and environmental impacts of soil erosion.Key words: Cs-137, erosion, sedimentation, USLE, sediment delivery ratio


Sign in / Sign up

Export Citation Format

Share Document