scholarly journals Sustainable Wastewater Management to Reduce Freshwater Contamination and Water Depletion in Mexico

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2307
Author(s):  
José de Anda ◽  
Harvey Shear

At present, most rivers, lakes, and reservoirs in Mexico have significant anthropogenic contamination. The lack of sanitation infrastructure, the increase in the number of nonoperational or abandoned sanitation facilities, limited enforcement of environmental regulations, and limited public policies for the reuse of treated wastewater all contribute to the contamination and water availability problem. The reasons for this are identified as (1) the high maintenance and operational costs in sanitation facilities (including electricity consumption); (2) poor planning and practices of wastewater management and reuse by municipalities; (3) national policies that do not favor the reuse of treated wastewater for agriculture, industry, and municipal services instead of using groundwater as at present; (4) failure to adopt a governance model at the three levels of government; and (5) transparency in the management of financial resources. Some measures to improve this situation include (a) transparent decision-making; (b) participation and accountability in budgeting and planning at the national, state, and municipal levels; and (c) planning for the reuse of treated wastewater to reduce groundwater extractions and to reduce discharges to surface waters from the beginning of every WWTP project.

2001 ◽  
Vol 44 (6) ◽  
pp. 141-147 ◽  
Author(s):  
R. Saravanane ◽  
D. V.S. Murthy ◽  
K. Krishnaiah

Starch manufacturing industrial units, such as sago mills, both at medium and large scale, suffer from inadequate treatment and disposal problems due to high concentration of suspended solid content present in the effluent. In order to investigate the viability of treatment of sago effluent, a laboratory scale study was conducted. The treatment of sago effluent was studied in a continuous flow anaerobic fluidized bed reactor. The start-up of the reactor was carried out using a mixture of digested supernatant sewage sludge and cow dung slurry in different proportions. The effect of operating variables such as COD of the effluent, bed expansion, minimum fluidization velocity on efficiency of treatment and recovery of biogas was investigated. The treated wastewater was analysed for recycling and reuse to ensure an alternative for sustainable water resourse management. The maximum efficiency of treatment was found to be 82% and the nitrogen enriched digested sludge was recommended for agricultural use.


2020 ◽  
Vol 4 (4) ◽  
pp. 2568-2577
Author(s):  
Daniela Moraes da Costa ◽  
Jhully Laiane Souza da Silva ◽  
Monique Sandra Oliveira Dias Barreto ◽  
Gilberto Caldeira Barreto

2020 ◽  
Author(s):  
Edward R. Jones ◽  
Michelle T. H. van Vliet ◽  
Manzoor Qadir ◽  
Marc F. P. Bierkens

Abstract. Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation, whilst simultaneously promoting sustainable development and supporting the transition to a circular economy. This study aims to provide the first comprehensive and consistent global outlook on the state of domestic and industrial wastewater production, collection, treatment and re-use. We use a data-driven approach, collating, cross-examining and standardising country-level wastewater data from online data resources. Where unavailable, data is estimated using multiple linear regression. Country-level wastewater data are subsequently downscaled and validated at 5 arc-minute (~ 10 km) resolution. This study estimates global wastewater production at 359.5 billion m3 yr−1, of which 63 % (225.6 billion m3 yr−1) is collected and 52 % (188.1 billion m3 yr−1) is treated. By extension, we estimate that 48 % of global wastewater production is released to the environment untreated, which is significantly lower than previous estimates of ~ 80 %. An estimated 40.7 billion m3 yr−1 of treated wastewater is intentionally re-used. Substantial differences in per capita wastewater production, collection and treatment are observed across different geographic regions and by level of economic development. For example, just over 16 % of the global population in high income countries produce 41 % of global wastewater. Treated wastewater re-use is particularly significant in the Middle East and North Africa (15 %) and Western Europe (16 %), while containing just 5.8 % and 5.7 % of the global population, respectively. Our database serves as a reference for understanding the global wastewater status and for identifying hotspots where untreated wastewater is released to the environment, which are found particularly in South and Southeast Asia. Importantly, our results also serve as a baseline for evaluating progress towards many policy goals that are both directly and indirectly connected to wastewater management (e.g. SDGs). Our spatially-explicit results available at 5 arc-minute resolution are well suited for supporting more detailed hydrological analyses such as water quality modelling and large-scale water resource assessments, and can be accessed at: https://doi.pangaea.de/10.1594/PANGAEA.918731 (Jones et al., 2020). A temporary link to this dataset for the review process can be accessed at: https://www.pangaea.de/tok/6631ef8746b59999071fa2e692fbc492c97352aa.


2021 ◽  
Vol 13 (2) ◽  
pp. 237-254
Author(s):  
Edward R. Jones ◽  
Michelle T. H. van Vliet ◽  
Manzoor Qadir ◽  
Marc F. P. Bierkens

Abstract. Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation, while simultaneously promoting sustainable development and supporting the transition to a circular economy. This study aims to provide the first comprehensive and consistent global outlook on the state of domestic and manufacturing wastewater production, collection, treatment and reuse. We use a data-driven approach, collating, cross-examining and standardising country-level wastewater data from online data resources. Where unavailable, data are estimated using multiple linear regression. Country-level wastewater data are subsequently downscaled and validated at 5 arcmin (∼10 km) resolution. This study estimates global wastewater production at 359.4×109 m3 yr−1, of which 63 % (225.6×109 m3 yr−1) is collected and 52 % (188.1×109 m3 yr−1) is treated. By extension, we estimate that 48 % of global wastewater production is released to the environment untreated, which is substantially lower than previous estimates of ∼80 %. An estimated 40.7×109 m3 yr−1 of treated wastewater is intentionally reused. Substantial differences in per capita wastewater production, collection and treatment are observed across different geographic regions and by level of economic development. For example, just over 16 % of the global population in high-income countries produces 41 % of global wastewater. Treated-wastewater reuse is particularly substantial in the Middle East and North Africa (15 %) and western Europe (16 %), while comprising just 5.8 % and 5.7 % of the global population, respectively. Our database serves as a reference for understanding the global wastewater status and for identifying hotspots where untreated wastewater is released to the environment, which are found particularly in South and Southeast Asia. Importantly, our results also serve as a baseline for evaluating progress towards many policy goals that are both directly and indirectly connected to wastewater management. Our spatially explicit results available at 5 arcmin resolution are well suited for supporting more detailed hydrological analyses such as water quality modelling and large-scale water resource assessments and can be accessed at https://doi.org/10.1594/PANGAEA.918731 (Jones et al., 2020).


2019 ◽  
Vol 11 (8) ◽  
pp. 2217 ◽  
Author(s):  
Valdes Ramos ◽  
Aguilera Gonzalez ◽  
Tobón Echeverri ◽  
Samaniego Moreno ◽  
Díaz Jiménez ◽  
...  

This paper presents an assessment of three potential applications of municipal treated wastewater in a semiarid region of northern Mexico. The potential applications considered are agriculture, industry, and watering urban green areas. The results indicate that in the best scenario, the maximal application of treated wastewater is 150 L/s for industrial activities. Besides industrial applications, this scenario would allow farmers and urban green areas to receive 980 L/s and 70 L/s of treated wastewater respectively. Other issues and alternatives are also identified. With the implementation of this scenario, it is possible to improve the environmental, and even the socioeconomic conditions, of the study region.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 175-182 ◽  
Author(s):  
E. Smith ◽  
S. Hegazy

Reuse of treated wastewater in irrigation is gaining recognition as a vital element in the water resources management plan of developing countries, especially those situated in arid and semi-arid regions. An understanding of the transport of residual pollutants from treated wastewater, such as bacteria, in soil as a result of irrigation is critical to assessing health risks and the possible contamination of limited groundwater resources. In this work, retention of E. coli is evaluated for a soil that is irrigated by treated wastewater for growth of non-food crops near Egypt's Red Sea coast. In particular, the effects of soil organic fraction (SOF) and hydraulic loading rate (HLR) were investigated in laboratory soil columns. The matrix of experiments included three HLRs and three SOFs. The retention of bacteria by adsorption was observed at HLRs of 5 and 13 cm/h, with the magnitude of the adsorption increasing proportionally to the SOF. The impact of SOF was greater for the lower HLR. At the lowest HLR investigated (5 cm/h), filtration was also observed for the two higher SOFs (0.674 and 2.04 per cent). At a high HLR (66 cm/h) simulating flood irrigation, retention of bacteria was minimal regardless of the SOF. Since the bacterial solution is applied to a dry soil column to simulate field conditions, E. coli breakthrough after two pore volumes of throughput (vs. one) provided a meaningful comparison of bacterial retention as a function of HLR and SOF.


Sign in / Sign up

Export Citation Format

Share Document