scholarly journals Remediation Efficiency of the In Situ Vitrification Method at an Unidentified-Waste and Groundwater Treatment Site

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3594
Author(s):  
Shu-Lung Kuo ◽  
Edward Ming-Yang Wu

The subject of this study was the dust collected from an electric arc furnace at an unidentified-waste treatment site in southern Taiwan. The dust underwent an in situ vitrification (ISV) process and was tested using the toxicity characteristic leaching procedure (TCLP), at the end of which the final product was analyzed for its stability and weather resistance. This study then examined the above results to determine whether the ISV process helps to enhance the efficiency and economic benefits of said waste-treatment site. A TCLP test conducted on the dust that had been treated with ISV revealed that concentrations of various heavy metals were not only far below those of the unprocessed sample dust but also fell below the limit stipulated in the TCLP regulation of Taiwan’s Environmental Protection Administration. The results show that after undergoing ISV treatment, heavy metals in the dust were either encapsulated or bound in silicon lattices and thus barely leached from the dust. Analyses using scanning electron microscopy (SEM) and an energy dispersive spectrometry (EDS) indicate that the surface of the dust appeared more compacted after going through the ISV process. In addition, the highly contaminated dust that underwent ISV treatment saw a pronounced decrease in or elimination of wave crests. Another analysis applying X-ray diffraction (XRD) showed that the SiO2 crests disappeared in the processed dust, suggesting that the crystal structure was replaced with quasi-vitreous products after ISV treatment. In the event that pollutants were extant, they were usually characterized by smaller size, high stability, excellent weather resistance, an innocuous nature, and recyclability.

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


2012 ◽  
Vol 11 (12) ◽  
pp. 2163-2168
Author(s):  
Alexandra-Dana Chitimus ◽  
Valentin Nedeff ◽  
Emilian Florin Mosnegutu ◽  
Mirela Panainte

2017 ◽  
Vol 72 (6) ◽  
pp. 355-364
Author(s):  
A. Kopp ◽  
T. Bernthaler ◽  
D. Schmid ◽  
G. Ketzer-Raichle ◽  
G. Schneider

2020 ◽  
Author(s):  
Chi-Toan Nguyen ◽  
Alistair Garner ◽  
Javier Romero ◽  
Antoine Ambard ◽  
Michael Preuss ◽  
...  

2019 ◽  
Author(s):  
Si Athena Chen ◽  
◽  
Peter Heaney ◽  
Jeffrey E. Post ◽  
Peter J. Eng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document