scholarly journals Features of the Distribution of Chlorophyll-a Concentration along the Western Coast of the Novaya Zemlya Archipelago in Spring

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3648
Author(s):  
Pavel R. Makarevich ◽  
Veronika V. Vodopianova ◽  
Aleksandra S. Bulavina ◽  
Pavel S. Vashchenko ◽  
Tatiana G. Ishkulova

In spring 2016, the thermohaline characteristics of water masses and the distribution of chlorophyll-a concentration in the pelagic zone of the eastern part of the Barents Sea were studied. For the first time, in the conditions of an abnormally warm year and the absence of ice cover, a complex of hydrobiological works was carried out on a section crossing the Barents Sea from south to north along the western coast of the Novaya Zemlya archipelago. High concentrations of chlorophyll-a > 1 ˂ 6 mg/m3 at all stations of the transect indicate a stage of spring bloom in the successional cycle of microalgae. Significant differences in the content of chlorophyll-a in waters of various origins were revealed. The highest concentrations of chlorophyll-a corresponded to Arctic surface water (5.56 mg/m3). Slightly lower values were observed in the transformed Atlantic waters of the Novozemelskoe and Kolguevo–Pechorskoe currents (3.53 ± 0.97–3.71 ± 1.04 mg/m3), and the lowest was in the Barents waters (1.24 ± 0.84–1.45 ± 1.13 mg/m3).

Author(s):  
Denis V Zakharov ◽  
Igor E Manushin ◽  
Tatiana B Nosova ◽  
Natalya A Strelkova ◽  
Valery A Pavlov

Abstract This article investigates the diet of the snow crab (Chionoecetes opilio) and its feeding intensity in the Barents Sea. Data show that snow crab has a diverse diet that includes almost all types of benthic invertebrates living in the Barents Sea. There are differences between the diets of females and males and of juveniles and adults. Juveniles and females typically occupy shallow areas with communities of bivalve molluscs, while males typically live deeper on slopes and depressions where polychaetes and crustaceans are the most abundant groups. Stomach contents were analysed to determine the species composition and frequency of occurrence of various benthic taxa. Consumption of food was estimated and compared with data from the Russian seas of the Pacific region. The total annual consumption of macrozoobenthos by snow crab was calculated in accordance with its current distribution in the Barents Sea. Snow crab consumes at least 30 000 tonnes of benthos annually, which amounts to 0.1–0.2% of the total macrozoobenthic biomass in the investigated area. The population of snow crab causes the largest impact on the benthic communities in the northeastern part of the Barents Sea and near the south side of the Novaya Zemlya archipelago.


2019 ◽  
Vol 485 (2) ◽  
pp. 207-211
Author(s):  
A. V. Maslov ◽  
N. V. Politova ◽  
V. P. Shevchenko ◽  
N. V. Kozina ◽  
A. N. Novigatsk ◽  
...  

The Co, Hf, Ce, Cr, Th, and REE systematics are analyzed for modern sediments collected by a bottom grab during the 67th and 68th cruises of R/V “Akademik Mstislav Keldysh” and samples taken in the Barents Sea bays and inlets. Our results indicate that most modern bottom sediments are composed of fine silicoclastic material enhanced with a suspended matter of the North Cape current, which erodes the western coast of Scandinavia, and due to bottom erosion of some marine areas, as well as erosion of rock complexes of the Kola Peninsula, Novaya Zemlya, and Franz Josef Land (local provenances). Material from Spitsbergen also probably played a certain role. In the southern part of the Barents Sea, clastic material is supplied by the Pechora River.


2021 ◽  
Vol 12 (3-2021) ◽  
pp. 88-97
Author(s):  
K.K. Moskvin ◽  

The paper describes species composition, distribution and biology of the polychaeta genus Pholoe in the north-east region of the Barents Sea (between Franz Josef Land and north-west coast of Novaya Zemlya archipelago). One species of the genu s was identified based on the reviewed morphological descriptions – Pholoe assimilis. The highest values of population density (1130 specimens/m2) and biomass (570 mg/m2) were registered in comparatively warm coastal waters of Novaya Zemlya archipelago. Pholoe assimilis’ population size structure based on the dorsal width of the fifth chaetiger was investigated for the first time. Size-frequency histograms indicate presence of at least four size classes.


2009 ◽  
Vol 55 (194) ◽  
pp. 960-972 ◽  
Author(s):  
Katie L. Grant ◽  
Chris R. Stokes ◽  
Ian S. Evans

AbstractWe present a comprehensive new inventory of surge-type glaciers on the Novaya Zemlya archipelago, using high-resolution (up to 4 m) satellite imagery from 1976/77 (Hexagon), 1989 (Landsat TM), 2001 (Landsat ETM+) and 2006 (ASTER). A total of 692 glaciers and their forelands were observed for glaciological and geomorphological criteria indicative of glacier surging (e.g. looped moraines, heavy surface crevassing, surface potholes, thrust-block moraines, concertina eskers). This enabled the identification of 32 potential surge-type glaciers (compared with four previously identified) representing 4.6% of the total but 18% by glacier area. We assess the characteristics of surge-type glaciers. Surge-type glaciers are statistically different from non-surge-type glaciers in terms of their area, length, surface slope, minimum elevation, mid-range elevation and terminus type. They are typically long (median length 18.5 km), large (median area 106.8 km2) outlet glaciers, with relatively low overall surface slopes (median slope 1.7°) and tend to terminate in water (marine or lacustrine). They are predominantly directed towards and located in the more maritime western region of the Russian Arctic, and we suggest that surge occurrence might be related to large and complex catchment areas that receive increased delivery of precipitation from the Barents Sea.


2020 ◽  
Vol 11 (5-2020) ◽  
pp. 116-125
Author(s):  
A.E. Noskovich ◽  

In the eastern part of the Barents Sea, there are 3 types of settlements of the bivalve mollusk Macoma calcarea. At low positive temperatures (from 0.6 to 1.3 оC),juveniles predominate on sandy-silty soils in settlements with low biomass, uneven growth and high mortality. In colder water masses (–0.4...–1.5 оC), M. calcareasettlements consist of long-lived, evenly growing large individuals that form high biomass values. In the settlement of group I, there was an increased elimination of certain size classes. The distribution of settlements depends little on the depth and salinity.


Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


2002 ◽  
Vol 4 ◽  
pp. 149 ◽  
Author(s):  
Andrei N Boltunov ◽  
Stanislav E Belikov

This paper reviews published information on the white whale or beluga (Delphinapterus leucas) inhabiting the Barents, Kara and Laptev seas. Some data obtained during multi-year aerial reconnaissance of sea ice in the Russian Arctic are also included. Ice conditions, considered one of the major factors affecting distribution of belugas, are described. The number of belugas inhabiting the Russian Arctic is unknown. Based on analysis of published and unpublished information we believe that the primary summer habitats of belugas in the Western Russian Arctic lie in the area of Frants-Josef Land, in the Kara Sea and in the western Laptev Sea. Apparently most belugas winter in the Barents Sea. Although it has been suggested that a considerable number of animals winter in the Kara Sea, there is no direct evidence for this. Apparent migrations of animals are regularly observed at several sites: the straits of the Novaya Zemlya Archipelago, the waters north of the archipelago, and Vilkitskiy Strait between the Kara and Laptev seas. Calving and mating take place in summer, and the beluga mother feeds a calf for at least a year. Females mature earlier than males, and about 30% of mature females in a population are barren. Sex ratio is apparently close to 1:1. The diet of the beluga in the region includes fish and crustaceans and shows considerable spatial and temporal variations. However, polar cod (Boreogadus saida) is the main prey most of the year, and whitefish (Coregonidae) contribute in coastal waters in summer. Usually belugas form groups of up to 10 related individuals of different ages, while large aggregations are common during seasonal migrations or in areas with abundant and easily available food. Beluga whaling in Russia has a history of several centuries. The highest catches were taken in the 1950s and 1960s, when about 1,500 animals were caught annually in the Western Russian Arctic. In the 1990s, few belugas were harvested in the Russian Arctic. In 1999 commercial whaling of belugas in Russia was banned. Belugas can be caught only for research, cultural and educational purposes and for the subsistence needs of local people. With the absence of significant whaling, anthropogenic pollution seems to be the major threat for the species.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 101
Author(s):  
Pavel R. Makarevich ◽  
Veronika V. Vodopianova ◽  
Aleksandra S. Bulavina

Effects of the sea-ice edge and the Polar Frontal Zone on the distribution of chlorophyll-a levels in the pelagic were investigated during multi-year observations in insufficiently studied and rarely navigable regions of the Barents Sea. Samples were collected at 52 sampling stations combined into 11 oceanographic transects over a Barents Sea water area north of the latitude 75° N during spring 2016, 2018, and 2019. The species composition, abundance and biomass of the phytoplankton community, chlorophyll-a concentrations, hydrological and hydrochemical parameters were analyzed. The annual phytoplankton evolution phase, defined as an early-spring one, was determined throughout the transects. The species composition of the phytoplankton community and low chlorophyll-a levels suggested no phytoplankton blooming in April 2016 and 2019. Not yet started sea-ice melting prevented sympagic (sea-ice-associated) algae from being released into the seawater. In May 2018, ice melting began in the eastern Barents Sea and elevated chlorophyll-a levels were recorded near the ice edge. Chlorophyll-a concentrations substantially differed in waters of different genesis, especially in areas influenced by the Polar Front. The Polar Front separated the more productive Arctic waters with a chlorophyll-a concentration of 1–5 mg/m3 on average from the Atlantic waters where the chlorophyll-a content was an order of magnitude lower.


Sign in / Sign up

Export Citation Format

Share Document