scholarly journals On the diversity of settlements of the bivalve mollusk Macoma calcarea (Bivalvia,Tellinidae) off the coast of Novaya Zemlya.

2020 ◽  
Vol 11 (5-2020) ◽  
pp. 116-125
Author(s):  
A.E. Noskovich ◽  

In the eastern part of the Barents Sea, there are 3 types of settlements of the bivalve mollusk Macoma calcarea. At low positive temperatures (from 0.6 to 1.3 оC),juveniles predominate on sandy-silty soils in settlements with low biomass, uneven growth and high mortality. In colder water masses (–0.4...–1.5 оC), M. calcareasettlements consist of long-lived, evenly growing large individuals that form high biomass values. In the settlement of group I, there was an increased elimination of certain size classes. The distribution of settlements depends little on the depth and salinity.

2020 ◽  
Vol 11 (4) ◽  
pp. 225-245
Author(s):  
Yu.V. Krasnov ◽  
◽  
A.V. Ezhov ◽  

In 2013–2019, observations on Arctic archipelagoes Novaya Zemlya and Franz-Josef Land were made. A series of multiannual monitoring of seabird colonies on the Murman coast (Kola Peninsula) were continued. The results show that large-scale negative effects on seabird populations mostly occur in areas of Atlantic water masses in the southwestern Barents Sea. On the coasts and islands ofMurman, considerable fluctuations of the number of kittiwakes and guillemots imposed on the general decreasing trend were noted. Within the Arctic water masses at Franz-Josef Land and Novaya Zemlya, the conditions of the colonies were more favorable. Geolocation data loggers helped to establish wintering and pre-breeding areas of kittiwakes and guillemots in the Barents Sea. Degradation of the seabird colonies is explained by oceanographic changes in the southern Barents Sea, along with the influence of integrative drivers such as food stock, i. e., presence and availability of capelin, and thermal conditions of the water masses determining its distribution in coastal waters.


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


2002 ◽  
Vol 59 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Geir Ottersen ◽  
Kristin Helle ◽  
Bjarte Bogstad

For the large Arcto-Norwegian stock of cod (Gadus morhua L.) in the Barents Sea, year-to-year variability in growth is well documented. Here three hypotheses for the observed inverse relation between abundance and the mean length-at-age of juveniles (ages 1–4) are suggested and evaluated. Based on comprehensive data, we conclude that year-to-year differences in length-at-age are mainly determined by density-independent mechanisms during the pelagic first half year of the fishes' life. Enhanced inflow from the southwest leads to an abundant cohort at the 0-group stage being distributed farther east into colder water masses, causing lower postsettlement growth rates. We can not reject density-dependent growth effects related to variability in food rations, but our data do not suggest this to be the main mechanism. Another hypothesis suggests that lower growth rates during periods of high abundance are a result of density-dependent mechanisms causing the geographic range of juveniles to extend eastwards into colder water masses. This is rejected mainly because year-to-year differences in mean length are established by age 2, which is too early for movements over large distances.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3648
Author(s):  
Pavel R. Makarevich ◽  
Veronika V. Vodopianova ◽  
Aleksandra S. Bulavina ◽  
Pavel S. Vashchenko ◽  
Tatiana G. Ishkulova

In spring 2016, the thermohaline characteristics of water masses and the distribution of chlorophyll-a concentration in the pelagic zone of the eastern part of the Barents Sea were studied. For the first time, in the conditions of an abnormally warm year and the absence of ice cover, a complex of hydrobiological works was carried out on a section crossing the Barents Sea from south to north along the western coast of the Novaya Zemlya archipelago. High concentrations of chlorophyll-a > 1 ˂ 6 mg/m3 at all stations of the transect indicate a stage of spring bloom in the successional cycle of microalgae. Significant differences in the content of chlorophyll-a in waters of various origins were revealed. The highest concentrations of chlorophyll-a corresponded to Arctic surface water (5.56 mg/m3). Slightly lower values were observed in the transformed Atlantic waters of the Novozemelskoe and Kolguevo–Pechorskoe currents (3.53 ± 0.97–3.71 ± 1.04 mg/m3), and the lowest was in the Barents waters (1.24 ± 0.84–1.45 ± 1.13 mg/m3).


Author(s):  
Denis V Zakharov ◽  
Igor E Manushin ◽  
Tatiana B Nosova ◽  
Natalya A Strelkova ◽  
Valery A Pavlov

Abstract This article investigates the diet of the snow crab (Chionoecetes opilio) and its feeding intensity in the Barents Sea. Data show that snow crab has a diverse diet that includes almost all types of benthic invertebrates living in the Barents Sea. There are differences between the diets of females and males and of juveniles and adults. Juveniles and females typically occupy shallow areas with communities of bivalve molluscs, while males typically live deeper on slopes and depressions where polychaetes and crustaceans are the most abundant groups. Stomach contents were analysed to determine the species composition and frequency of occurrence of various benthic taxa. Consumption of food was estimated and compared with data from the Russian seas of the Pacific region. The total annual consumption of macrozoobenthos by snow crab was calculated in accordance with its current distribution in the Barents Sea. Snow crab consumes at least 30 000 tonnes of benthos annually, which amounts to 0.1–0.2% of the total macrozoobenthic biomass in the investigated area. The population of snow crab causes the largest impact on the benthic communities in the northeastern part of the Barents Sea and near the south side of the Novaya Zemlya archipelago.


2019 ◽  
Vol 485 (2) ◽  
pp. 207-211
Author(s):  
A. V. Maslov ◽  
N. V. Politova ◽  
V. P. Shevchenko ◽  
N. V. Kozina ◽  
A. N. Novigatsk ◽  
...  

The Co, Hf, Ce, Cr, Th, and REE systematics are analyzed for modern sediments collected by a bottom grab during the 67th and 68th cruises of R/V “Akademik Mstislav Keldysh” and samples taken in the Barents Sea bays and inlets. Our results indicate that most modern bottom sediments are composed of fine silicoclastic material enhanced with a suspended matter of the North Cape current, which erodes the western coast of Scandinavia, and due to bottom erosion of some marine areas, as well as erosion of rock complexes of the Kola Peninsula, Novaya Zemlya, and Franz Josef Land (local provenances). Material from Spitsbergen also probably played a certain role. In the southern part of the Barents Sea, clastic material is supplied by the Pechora River.


2021 ◽  
pp. 398-415
Author(s):  
N.V. Politova ◽  
◽  
T.N. Alekseeva ◽  
N.V. Kozina ◽  
M.D. Kravchishina ◽  
...  

The paper presents data from grain size and mineralogical analyzes of surface bottom sediment samples obtained on several cruises of the R/V Akademik Mstislav Keldysh (2016–2018) from different parts of the Barents Sea. Pebble and gravel material is found in surface sediments in the form of impurities scattered throughout the sea. Such a chaotic distribution pattern is apparently associated with ice separation. Coarse material is most common in the Barents Sea off the coast of the Kola Peninsula, off the coast of Novaya Zemlya, Spitsbergen, where it accumulates due to coastal abrasion. In addition, a fraction >1 mm is widespread at depths where fine fractions are stirred and leached. The most common sediments in coastal shallow water are sands. Sands (0.1–1 mm) are widespread in the southern and southeastern regions of the sea, in the region of the Pechora polygon, the Kaninsky shallow water, the Kola Peninsula, and in the northwest, off the coast of Svalbard. With increasing depth, the sands are replaced by mixed sediments with a low admixture of pelite. Pelitic sediments are prevalent in the central part of the sea. Precipitation with a pelitic fraction (<0.01 mm) of more than 50% occupy about 70% of the Barents Sea. They are widespread in deep-sea hollows and trenches, as well as in the numerous fiords of the North Island of Novaya Zemlya and Franz Josef Land. Surface sediments have a predominantly terrigenous composition; only at the border with the Norwegian Sea the proportion of biogenic material increases. The mineral composition of sediments is dominated by quartz and feldspars, clay minerals are mainly represented by illite, smectite and kaolinite.


2021 ◽  
pp. 25-43
Author(s):  
A.E. Rybalko ◽  
◽  
M.Yu. Tokarev ◽  

Hot questions in the modern Quaternary geology of the Arctic seas associated with their glaciation are discussed in this article. The questions of the history of the occurrence of the problem of shelf glaciation or “drift” accumulation of boulder-bearing sediments are considered in detail. The results of seismic-acoustic studies and their interpretation with the aim of seismic stratigraphic and genetic partition of the cover of loose sediments of Quaternary age are considered in detail. Arguments are presented in favor of the continental origin of glaciers (Novaya Zemlya, Ostrovnoy and Scandinavian), which in the late Neopleistocene spread to the shelf of the Barents Sea and occupied its surface to depths of 120−150 m. Further development of glaciation was already due to the expansion of the area of shelves glaciers. The facies zoning of glacial-marine deposits is estimated, which is related to the distance from the front of the glaciers. It is concluded that already at the end of the Late Pleistocene, most of the modern Barents Sea was free from glaciers and from the annual cover of pack ice. Data on the absence of the area distribution of frozen sediment strata within the modern Barents Sea shelf are presented.


2016 ◽  
Vol 6 (1) ◽  
pp. 31-42
Author(s):  
Vladislav Nikolaevich Svetochev ◽  
Nikolay Nikolaevich Kavtsevich ◽  
Olga Nagimovna Svetocheva

Harp seal pups (4 ind.) were caught and marked with satellite telemetry transmitters (STT) in the White Sea in March-April 2010, the average tenure of STT was 226 ± 51.7 (103.6) days. In April the seals on the growth stage of "beater" left the White Sea on the drifting ice. In the Barents Sea the seals migrated north through the eastern part of the Barents Sea. Seals came to the northernmost point of their migration route, i.e. edge of the pack ice in the August – October period. One seal came out to the Greenland Sea. Seals’ return migration was in winter along the Novaya Zemlya to the south-eastern part of the Barents Sea. Result data of marking showed harp seal juveniles during the first seasonal migration may leave the traditional feeding areas, and during the return migration may not come to molt to the White Sea. According to satellite telemetry data the Czech Bay (Barents Sea) can be one of the molt areas of harp seal juveniles.


Sign in / Sign up

Export Citation Format

Share Document