scholarly journals Dissolved Metal (Fe, Mn, Zn, Ni, Cu, Co, Cd, Pb) and Metalloid (As, Sb) in Snow Water across a 2800 km Latitudinal Profile of Western Siberia: Impact of Local Pollution and Global Transfer

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 94
Author(s):  
Ivan V. Krickov ◽  
Artem G. Lim ◽  
Vladimir P. Shevchenko ◽  
Sergey N. Vorobyev ◽  
Frédéric Candaudap ◽  
...  

Snow cover is known to be an efficient and unique natural archive of atmospheric input and an indicator of ecosystem status. In high latitude regions, thawing of snow provides a sizable contribution of dissolved trace metals to the hydrological network. Towards a better understanding of natural and anthropogenic control on heavy metals and metalloid input from the atmosphere to the inland waters of Siberian arctic and subarctic regions, we measured chemical composition of dissolved (<0.22 µm) fractions of snow across a 2800 km south–north gradient in Western Siberia. Iron, Mn, Co, Ni, and Cd demonstrated sizable (by a factor of 4–7) decrease in concentration northward, which can be explained by a decrease in overall population density and the influence of dry aerosol deposition. Many elements (Mn, Ni, Cu, Cd, Pb, As, and Sb) exhibited a prominent local maximum (a factor of 2–3) in the zone of intensive oil and gas extraction (61–62° N latitudinal belt), which can be linked to gas flaring and fly ash deposition. Overall, the snow water chemical composition reflected both local and global (long-range) atmospheric transfer processes. Based on mass balance calculation, we demonstrate that the winter time atmospheric input represents sizable contribution to the riverine export fluxes of dissolved (<0.45 µm) Mn, Co, Zn, Cd, Pb, and Sb during springtime and can appreciably shape the hydrochemical composition of the Ob River main stem and tributaries.

2020 ◽  
Vol 163 ◽  
pp. 05011
Author(s):  
Marina Opekunova ◽  
Anatoly Opekunov ◽  
Stepan Kukushkin ◽  
Sergey Lisenkov

This study describes the changes in the chemical composition of soil waters under the influence of natural and anthropogenic factors in the area of development of oil and gas condensate fields in the north of Western Siberia. The concentration of chemical elements (Na, K, Ca, Cu, Zn, Fe, Pb, Cd, Ni, Co, Cr, Ba, Sr, Cd, and Mn) in soils, ground and soil waters was determined. Pollution of soil water and soil is local in nature and it is characteristic of areas located in the immediate vicinity of industrial facilities. A set of indicators is proposed for assessing the transformation of natural complexes under the influence of oil and gas production. The increased pH values, concentrations of petroleum hydrocarbons, nitrates, chlorides, sodium, potassium, calcium, barium, strontium, iron and manganese, as well as zinc, vanadium, cobalt and nickel are observed. In the impact zones in soil waters and soils. Mechanical disturbances of the soil and vegetation cover lead to an increase in defrost, secondary waterlogging and are accompanied by an increase in the migration of chemical elements in the catenary structure of landscapes.


2016 ◽  
Author(s):  
Vladimir P. Shevchenko ◽  
Oleg S. Pokrovsky ◽  
Sergey N. Vorobyev ◽  
Ivan V. Krickov ◽  
Rinat M. Manasypov ◽  
...  

Abstract. Towards a better understanding of chemical composition of snow and its impact on surface water hydrochemistry in poorly studied Western Siberia Lowland (WSL), dissolved (melted snow) and particulate (> 0.45 μm) fractions of snow were sampled in February 2014 across a 1700-km latitudinal gradient (c.a. 56.5 to 68° N) in essentially pristine regions. Concentration of dissolved Fe, Co, Cu, As, La, increased by a factor of 2 to 5 north of 63° N. The pH, Ca, Mg, Sr, Mo and U dissolved concentration in snow water increased with the increase in concentration of particulate fraction (PF), which was also correlated with the increase in calcite and dolomite proportion in the mineral fraction, suggesting an enrichment of meltwater by these elements during dissolution of carbonate minerals. The concentrations of Al, Fe, Pb, La and other insoluble elements in


2017 ◽  
Vol 21 (11) ◽  
pp. 5725-5746 ◽  
Author(s):  
Vladimir P. Shevchenko ◽  
Oleg S. Pokrovsky ◽  
Sergey N. Vorobyev ◽  
Ivan V. Krickov ◽  
Rinat M. Manasypov ◽  
...  

Abstract. In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64–68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.


Author(s):  
I. I. Lube ◽  
N. V. Trutnev ◽  
S. V. Tumashev ◽  
A. V. Krasikov ◽  
A. G. Ul’yanov ◽  
...  

At production of pipes of type 13Cr grade steel used at development of oil and gas deposits in areas with aggressive environment, intensive wear of instrument takes place, first of all, piercing mill mandrels. Factors, influencing the resistivity of the piercing mandrels considered, including chemical composition of the material, the mandrel is made of and its design. Based on industrial experience it was shown, that chrome content in the mandrel material practically does not affect on the increase of its resistivity, since the formed thin protective oxides having high melting temperature, are quickly failed and practically are not restored in the process of piercing. To increase the resistivity of piercing mandrels at production of casing tubes of type 13Cr grade steel, a work was accomplished to select a new material for their manufacturing. The chemical composition of steel presented, which was traditionally used for piercing mandrels manufacturing, as well as a steel grade proposed to increase their resistivity. First, molybdenum content was increased, which increases the characteristics of steel strength and ductility at high temperatures and results in grain refining. Second, tungsten content was also increased, which forms carbides in the steel resulting in an increase of its hardness and “red resistivity”, as well as in preventing grains growth during heating. Third, cobalt content was also increased, which increases heat resistivity and shock loads resistivity. The three elements increase enabled to increase the mandrels resistivity by two times. Results of mandrel test of steel 20ХН2МВ3КБ presented, the mandrel having corrugation on the working cone surface, which enabled to reach the resistivity growth to 12 passes without significant change of instrument cost. Microstructure of mandrels made of steels 20Х2Н4МФА and 20ХН2МВ3КБ shown. Application of the centering pin of special design was tested, which provided forming of a rounding edge on the front billet ends, eliminated undercut of mandrel external surface in the process of secondary billet grip and increase the service life of the piercing mill mandrels. At production of seamless pipes of martensite class type 13Cr stainless steels having L80 group of strength, an increase of piercing mandrel resistivity was reached by more than four times, which together with other technical solutions enabled to increase the hourly productivity of the hot rolling section of Volzhsky pipe plant ТПА 159-426 line by more than two times.


2018 ◽  
pp. 46-52
Author(s):  
A.V. Kolonskikh ◽  
◽  
S.P. Mikhaylov ◽  
R.R. Murtazin ◽  
K.V. Toropov ◽  
...  
Keyword(s):  

2021 ◽  
pp. 13-22
Author(s):  
R. M. Bembel ◽  
S. R. Bembel ◽  
M. I. Zaboeva ◽  
E. E. Levitina

Based on the well-known results of studies of the ether-geosoliton concept of the growing Earth, the article presents the conclusions that made it possible to propose a model of thermonuclear synthesis of chemical elements that form renewable reserves of developed oil and gas fields. It was revealed that local zones of abnormally high production rates of production wells and, accordingly, large cumulative production at developed fields in Western Siberia are due to the restoration of recoverable reserves due to geosoliton degassing. Therefore, when interpreting the results of geological and geophysical studies, it is necessary to pay attention to the identified geosoliton degassing channels, since in the works of R. M. Bembel and others found that they contributed to the formation of a number of hydrocarbon deposits in Western Siberia. When interpreting the results of geological-geophysical and physicochemical studies of the fields being developed, it is recommended to study the data of the ring high-resolution seismic exploration technology in order to identify unique areas of renewable reserves, which can significantly increase the component yield of hydrocarbon deposits.


Author(s):  
A.A. Timirgalin ◽  
M.G. Butorina ◽  
N.O. Novikov ◽  
G.V. Volkov ◽  
I.R. Mukminov ◽  
...  

The resource base of Western Siberia needs to be replenished to maintain the current development indicators. The reserves associated with the classic structural traps were diagnosed and mapped for the main horizons in Western Siberia. Replenishment of the resource base at the expense of such reserves is ineffective due to the fact that undiscovered traps of these types are thin, or lie at great depths, which ultimately negatively affects the quality of the resource base and the economic efficiency of their involvement in development. The driver of the growth and replenishment of the resource base under current conditions is the Achimov deposits, which are ubiquitous in this area at depths of 2500–3500 m and are genetically deep-water deposits of fans. The advantage of involving these deposits in development is often associated with the confinement to existing assets, where production is carried out from above and below-lying geological objects, the complexity is associated with the lithological type of traps, which is not diagnosed by direct analysis of seismic materials, as well as the extremely poor knowledge of the deposits over the area. Considering that the variability of properties over the area is a distinctive feature of Achimov deposits, the factor of poor knowledge by drilling significantly complicates the understanding of the potential of the deposits. In order to identify and assess the most promising areas for involvement in the development of the Achimov deposits, in PJSC Gazprom Neft the work “Regional assessment and zonal study of the prospects for oil and gas potential of the Achimov formation in the Western Siberia” was carried out. The goal and objectives is to form a reliable tool for searching and forecasting potential options using the generated regional maps of criteria (various characteristic properties and their combinations) built on the basis of data generalization throughout Western Siberia.


Sign in / Sign up

Export Citation Format

Share Document