scholarly journals Innovative Culturomic Approaches and Predictive Functional Metagenomic Analysis: The Isolation of Hydrocarbonoclastic Bacteria with Plant Growth Promoting Capacity

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 142
Author(s):  
Ilaria Chicca ◽  
Simone Becarelli ◽  
Giacomo Bernabei ◽  
Giovanna Siracusa ◽  
Simona Di Gregorio

Innovative culturomic approaches were adopted to isolate hydrocarbonoclastic bacteria capable of degrading diesel oil, bitumen and a selection of polycyclic aromatic hydrocarbons (PAH), e.g., pyrene, anthracene, and dibenzothiophene, from a soil historically contaminated by total petroleum hydrocarbons (TPH) (10,347 ± 98 mg TPH/kg). The culturomic approach focussed on the isolation of saprophytic microorganisms and specialist bacteria utilising the contaminants as sole carbon sources. Bacterial isolates belonging to Pseudomonas, Arthrobacter, Achromobacter, Bacillus, Lysinibacillus, Microbacterium sps. were isolated for their capacity to utilise diesel oil, bitumen, pyrene, anthracene, dibenzothiphene, and their mixture as sole carbon sources. Pseudomonas, Arthrobacter, Achromobacter and Microbacterium sps. showed plant growth promoting activity, producing indole-3-acetic acid and expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. In parallel to the culturomic approach, in the microbial community of interest, bacterial community metabarcoding and predictive functional metagenomic analysis were adopted to confirm the potentiality of the isolates in terms of their functional representativeness. The combination of isolation and molecular approaches for the characterisation of a TPH contaminated soil microbial community is proposed as an instrument for the construction of an artificial hydrocarbonoclastic microbiota for environmental restoration.

Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Ewa Ozimek ◽  
Agnieszka Hanaka

In the most recent scientific reports based on the DNA or RNA-analyses a widespread presence of the filamentous fungi, Mortierella in various environments has been shown. Some strains of this genus belong to the plant growth-promoting fungi (PGPF) and are found in the bulk soil, rhizosphere and plants tissues. These microorganisms are also often found in the extremely hostile environments, responsible for improving access to the bioavailable forms of P and Fe in the soils, the synthesis of phytohormones and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and last but not least the protection of agricultural plants from pathogens. Furthermore, earlier reports classified Mortierella spp. as the saprotrophic microorganisms isolated from the forest litter, and nowadays their status as a very valuable decomposers in the agricultural soils was confirmed. The key features like the ability to survive under very unfavorable environmental conditions and the utilization of carbon sources contained in polymers like cellulose, hemicellulose, chitin make these fungi efficient as the agricultural inoculants. The growing interest in the application of Mortierella spp. is mainly due to the potential use of this genus in the increase of the nutrient uptake efficiency, positive effect in crop protection against adverse conditions, and reduction of chemical fertilizers and pesticides applied. Moreover, activities of Mortierella species selected from the wild or cultivated plants influence the soil microbiota and support the performance of the beneficial microorganisms enhancing significantly crop yield.


Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Anithadevi Kenday Sivaram ◽  
Logeshwaran Panneerselvan ◽  
Kannappar Mukunthan ◽  
Mallavarapu Megharaj

Pyroligneous acid (PA) is often used in agriculture as a plant growth and yield enhancer. However, the influence of PA application on soil microorganisms is not often studied. Therefore, in this study, we investigated the effect of PA (0.01–5% w/w in soil) on the microbial diversity in two different soils. At the end of eight weeks of incubation, soil microbial community dynamics were determined by Illumina-MiSeq sequencing of 16S rRNA gene amplicons. The microbial composition differed between the lower (0.01% and 0.1%) and the higher (1% and 5%) concentration in both PA spiked soils. The lower concentration of PA resulted in higher microbial diversity and dehydrogenase activity (DHA) compared to the un-spiked control and the soil spiked with high PA concentrations. Interestingly, PA-induced plant growth-promoting bacterial (PGPB) genera include Bradyrhizobium, Azospirillum, Pseudomonas, Mesorhizobium, Rhizobium, Herbaspiriluum, Acetobacter, Beijerinckia, and Nitrosomonas at lower concentrations. Additionally, the PICRUSt functional analysis revealed the predominance of metabolism as the functional module’s primary component in both soils spiked with 0.01% and 0.1% PA. Overall, the results elucidated that PA application in soil at lower concentrations promoted soil DHA and microbial enrichment, particularly the PGPB genera, and thus have great implications for improving soil health.


2019 ◽  
Vol 11 (2) ◽  
pp. 346-351
Author(s):  
Deepika Chhabra ◽  
Poonam Sharma

Bacteria that colonize plant tissues other than rhizobia and are beneficial for plant growth referred to non rhizobial plant growth-promoting endophytic bacteria (PGPEB). This study was designed to assay the biocontrol activity of plant growth promoting endophytic bacterial isolates those found positive for P. solubilization, ACC deaminase, Indole acetic acid and Gibberelic acid production. These bacterial isolates were obtained from chickpea (Cicer arietinum L.) tissues (roots and nodules).  In a previous study a total of 263 non rhizobial endophytic bacterial isolates were isolated. Out of 263 isolates, 64.5% and 34.5% were Gram positive and negative, respectively. Further for biochemical characterization, catalase, oxidase, citrate utilization, nitrate reduction, methyl red and Voges Proskauer’s tests, were performed. On the basis of P solubilization, ACC deaminase, Indole acetic acid and Gibberelic acid production 75 potential isolates were selected and screened for their biocontrol activity viz. (production of cell wall degrading enzymes, production of HCN and fluorescent pigment). Out of 75 isolates, only 29 isolates produced cellulase, 64 isolates were able to produce protease and 28 were positive for both cellulose and protease. Of 75 endophytic isolates 12 isolates (7 from root tissue and 5 from nodules tissue, respectively) were positive for HCN production and 16 isolates were found to be fluorescent pigment producer under µv ligh. As chemical fertilizers and pesticides have detrimental effects on the environment. So these bacterial endophytic isolates will be used not only as a biofertilizer because of their plant growth promotional activities but also used as an alternative of synthetic chemicals for control of several plant diseases.


2007 ◽  
Vol 53 (12) ◽  
pp. 1291-1299 ◽  
Author(s):  
Youai Hao ◽  
Trevor C. Charles ◽  
Bernard R. Glick

In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to α-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS– (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Umesh P. Shrivastava ◽  
Ashok Kumar

A total of nine strains of plant growth promoting rhizobacteria were analyzed for ACC deaminase activity, where highest ACC deaminase activity was found in Klebsiella sp strain ECI-10A (539.1 nmol α-keto butyrate/ mg protein/ h) and lowest in Microbacterium sp strain ECI-12A (122.0 nmol α-keto butyrate/ mg protein/ h). Although Microbacterium sp strain ECI-12A showed lowest level of ACC deaminase activity, but, the species of Microbacterium isolated from rhizosphere is the first report. Microbacterium sp strain ECI-12A was also analyzed under varying conditions of time, amount of 1-Aminocyclopropane-1- carboxylate (ACC), and temperature for optimization of the ACC deaminase activity. The optimum activity was recorded with the supplementation of 5mM ACC at 30°C temperature after 24h of culture growth. All the nine strains showed acdS gene in the PCR amplification of that gene. No any rhizospheric Microbacterium species showing ACC deaminase activity have been reported earlier, therefore, we report here ACC deaminase activity in Microbacterium sp ECI-12A isolated from rice rhizosphere is a novel finding. DOI: http://dx.doi.org/10.3126/ijasbt.v1i1.7921 Int J Appl Sci Biotechnol, 2013, Vol. 1(1): 11-15


2015 ◽  
Vol 9 (3) ◽  
pp. 24-37 ◽  
Author(s):  
Mohammed Faisal Ansari ◽  
Devayani R. Tipre ◽  
Shailesh R. Dave

Organic farming is gaining popularity where bio-inoculants could play a key role in promoting the growth of plants. The liquid biofertilizers concept is new to farmers and developed recently. Lots of liquid biofertilizers formulations and field efficiency were shown in the past by various researchers, but the plant growth promoting (PGP) efficiency of the liquid biofertilizers isolates were not reported till date. In the present work 6 different commercially available liquid biofertilizers were used to isolate the organism. These isolated cultures were used to study their PGP efficiency with respect to phosphate solubilization and production of EPS, IAA, siderophore, ammonia, chitinase, ACC-deaminase and HCN. The phosphate solubilization was shown up to 303 g/ml by APS isolate. EPS production was shown by using different C sources and production up to 24 g/l was shown by studied isolated. Most of the organisms studied were able to produce IAA and highest production was shown up to 20 g/ml. More than 65% studied isolates showed siderophore and ACC-deaminase production. The present study shows that the commercial liquid biofertilizer isolates possess multiple traits of plant growth promotion. DOI: http://dx.doi.org/10.3126/ijls.v9i3.12463   International Journal of Life Sciences 9 (3): 2015; 24-37


2001 ◽  
Vol 47 (4) ◽  
pp. 368-372 ◽  
Author(s):  
Donna M Penrose ◽  
Bernard R Glick

It was previously proposed that plant growth-promoting bacteria that possess 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase could utilize ACC that is present in the exudate of germinating canola seeds. The uptake and cleavage of ACC by these bacteria would lower the level of ACC, and thus ethylene within the plant, and reduce the extent of its inhibition on root elongation. To test part of the above mentioned model, ACC levels were monitored in canola seed tissues and exudate during germination. Lower amounts of ACC were present in the exudate and tissues of seeds treated with the plant growth-promoting bacterium Enterobacter cloacae CAL3, than in control seeds treated with MgSO4. The ACC-related compounds, α- and γ-aminobutyric acids, both known to stimulate ethylene production, were also measured in the canola seed exudate and tissues. Approximately the same levels of α-aminobutyric acid were present in the exudates of the bacterium-treated seeds and the control seeds, but the amount of α-aminobutyric acid was lower in the tissues of the bacterium-treated seeds than in the control seeds. Smaller quantities of γ-aminobutyric acid were seen in both the exudate and tissues of the E. cloacae CAL3-treated seeds than in the control seeds.Key words: ACC ethylene, canola, seed extract, seed exudate, plant growth-promoting bacteria.


Sign in / Sign up

Export Citation Format

Share Document