scholarly journals Energy Optimal Operation of Hybrid Battery Systems and Comparison to a Single-Cell Reference System for Electric Vehicles Including the Aged State of High Energy Cells

2016 ◽  
Vol 8 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Raphael Wegmann ◽  
Volker D¨oge ◽  
Dirk Sauer
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4223
Author(s):  
Annika Ahlberg Tidblad ◽  
Kristina Edström ◽  
Guiomar Hernández ◽  
Iratxe de Meatza ◽  
Imanol Landa-Medrano ◽  
...  

Nowadays, batteries for electric vehicles are expected to have a high energy density, allow fast charging and maintain long cycle life, while providing affordable traction, and complying with stringent safety and environmental standards. Extensive research on novel materials at cell level is hence needed for the continuous improvement of the batteries coupled towards achieving these requirements. This article firstly delves into future developments in electric vehicles from a technology perspective, and the perspective of changing end-user demands. After these end-user needs are defined, their translation into future battery requirements is described. A detailed review of expected material developments follows, to address these dynamic and changing needs. Developments on anodes, cathodes, electrolyte and cell level will be discussed. Finally, a special section will discuss the safety aspects with these increasing end-user demands and how to overcome these issues.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3932
Author(s):  
Jie Song ◽  
Qing Ye ◽  
Kun Wang ◽  
Zhiyuan Guo ◽  
Meiling Dou

The development of high efficient stacks is critical for the wide spread application of proton exchange membrane fuel cells (PEMFCs) in transportation and stationary power plant. Currently, the favorable operation conditions of PEMFCs are with single cell voltage between 0.65 and 0.7 V, corresponding to energy efficiency lower than 57%. For the long term, PEMFCs need to be operated at higher voltage to increase the energy efficiency and thus promote the fuel economy for transportation and stationary applications. Herein, PEMFC single cell was investigated to demonstrate its capability to working with voltage and energy efficiency higher than 0.8 V and 65%, respectively. It was demonstrated that the PEMFC encountered a significant performance degradation after the 64 h operation. The cell voltage declined by more than 13% at the current density of 1000 mA cm−2, due to the electrode de-activation. The high operation potential of the cathode leads to the corrosion of carbon support and then causes the detachment of Pt nanoparticles, resulting in significant Pt agglomeration. The catalytic surface area of cathode Pt is thus reduced for oxygen reduction and the cell performance decreased. Therefore, electrochemically stable Pt catalyst is highly desirable for efficient PEMFCs operated under cell voltage higher than 0.8 V.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2646 ◽  
Author(s):  
Se-Hyeok Choi ◽  
Akhtar Hussain ◽  
Hak-Man Kim

The optimal operation of microgrids is challenging due to the presence of various uncertain factors, i.e., renewable energy sources, loads, market price signals, and arrival and departure times of electric vehicles (EVs). In order to incorporate these uncertainties into the operation model of microgrids, an adaptive robust optimization-based operation method is proposed in this paper. In particular, the focus is on the uncertainties in arrival and departure times of EVs. The optimization problem is divided into inner and outer problems and is solved iteratively by introducing column and constraint cuts. The unit commitment status of dispatchable generators is determined in the outer problem. Then, the worst-case realizations of all the uncertain factors are determined in the inner problem. Based on the values of uncertain factors, the generation amount of dispatchable generators, the amount of power trading with the utility grid, and the charging/discharging amount of storage elements are determined. The performance of the proposed method is evaluated using three different cases, and sensitivity analysis is carried out by varying the number of EVs and the budget of uncertainty. The impact of the budget of uncertainty and number of EVs on the operation cost of the microgrid is also evaluated considering uncertainties in arrival and departure times of EVs.


2021 ◽  
Author(s):  
Yujing Bi ◽  
Deyu Wang

As electric vehicle market growing fast, lithium ion batteries demand is increasing rapidly. Sufficient battery materials supplies including cathode, anode, electrolyte, additives, et al. are required accordingly. Although layered cathode is welcome in high energy density batteries, it is challenging to balance the high energy density and safety beside cost. As consequence, olivine phosphate cathode is coming to the stage center again along with battery technology development. It is important and necessary to revisit the olivine phosphate cathode to understand and support the development of electric vehicles utilized lithium ion batteries. In addition, blend cathode is a good strategy to tailor and balance cathode property and performance. In this chapter, blend cathode using olivine phosphate cathode will be discussed as well as olivine phosphate cathode.


Author(s):  
Jing Wang ◽  
Xingkang Huang ◽  
Junhong Chen

Solid-state lithium batteries (SSLBs) are promising candidates for replacing traditional liquid-based Li-ion batteries and revolutionizing battery systems for electric vehicles and portable devices. However, longstanding issues such as form factors,...


2019 ◽  
Vol 12 ◽  
pp. 117862211988048 ◽  
Author(s):  
Erick R Bandala ◽  
Oscar M Rodriguez-Narvaez

Cavitation is considered a high energy demanding process for water treatment. For this study, we used a simple experimental setup to generate cavitation at a low pressure (low energy) and test it for hydroxyl radical production using a well-known chemical probe as a hydroxyl radical scavenger. The conditions for generating the cavitation process (eg, pressure, flow velocity, temperature, and other significant variables) were used to degrade model contaminants, an azo dye and an antibiotic. The amount of hydroxyl radicals generated by the system was estimated using N,N-dimethyl-p-nitrosoaniline (pNDA) as hydroxyl radical scavenger. The capability of hydrodynamic cavitation (HC) to degrade contaminants was assessed using Congo red (CR) and sulfamethoxazole (SMX) as model contaminants. Different chemical models were analyzed using UV-visible spectrophotometry (for pNDA and CR) and high-performance liquid chromatography (HPLC) (for SMX) after HC treatment under different process conditions (ie, pressure of 13.7 and 10.3 kPa, and flow rates of 0.14 to 3.6 × 10−4 m3/s). No pNDA bleaching was observed for any of the reaction conditions tested after 60 minutes of treatment, which suggests that there was no hydroxyl radical generation during the process. However, 50% degradation of CR and 25% degradation of SMX were observed under the same process conditions, comparable with previously reported results. These results suggest that the process is most likely thermally based rather than radically based, and therefore, it can degrade organic pollutants even if no hydroxyl radicals are produced. Hydrodynamic cavitation, either alone or coupled with other advanced water technologies, has been identified as a promising technology for removing organic contaminants entering the water cycle; however, more research is still needed to determine the specific mechanisms involved in the process and the optimal operation conditions for the system.


Sign in / Sign up

Export Citation Format

Share Document