scholarly journals Elucidating disease dynamics in the biocontrol of Ailanthus altissima while confirming the host specificity of the vascular wilt pathogen Verticillium nonalfalfae

Author(s):  
Kristen L Wickert
2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Matt T. Kasson ◽  
Lindsay R. Kasson ◽  
Kristen L. Wickert ◽  
Donald D. Davis ◽  
Jason E. Stajich

Verticillium nonalfalfae, a cosmopolitan soil-borne phytopathogen, causes vascular wilt in agricultural crops and perennial woody plants. Select strains of V. nonalfalfae can cause lethal disease in the invasive tree Ailanthus altissima and several have since been utilized as a biological control (biocontrol) against this widespread invader.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 999-999 ◽  
Author(s):  
J. Rebbeck ◽  
M. A. Malone ◽  
D. P. G. Short ◽  
M. T. Kasson ◽  
E. S. O'Neal ◽  
...  

Verticillium wilt of the highly invasive tree-of-heaven [Ailanthus altissima (Mill.) Swingle], caused by Verticillium nonalfalfae Interbitzin et al. (1), formerly classified as V. albo-atrum Reinke and Berthold, has been reported in the United States from two states: Pennsylvania (2) and Virginia (3). Infected A. altissima in both states exhibited similar symptoms of wilt, premature defoliation, terminal dieback, yellow vascular discoloration, and mortality. In June 2012, the second author observed dead and dying A. altissima trees in southern Ohio (Pike County) that exhibited symptoms similar to those on diseased A. altissima trees in Pennsylvania and Virginia. Samples were collected from stems of three symptomatic A. altissima trees and sent to Penn State for morphological and molecular identification. Immediately upon arrival, samples were surface-disinfected and plated onto plum extract agar (PEA), a semi-selective medium for Verticillium spp., amended with neomycin and streptomycin (2). The samples yielded six isolates, two from each of the three symptomatic trees, all of which were putatively identified as V. nonalfalfae based on the presence of verticillate conidiophores and formation of melanized hyphae. DNA was extracted from three isolates and molecular analyses performed using known primers (1) coding for elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD), and tryptophan synthase (TS). A BLAST search generated sequences that revealed 100% similarity to V. nonalfalfae for all three protein coding genes among the three Ohio isolates and reference sequences from Ailanthus, including isolates VnAaPA140 (GenBank Accession Nos. KC307764, KC307766, and KC307768) and VnAaVA2 (KC307758, KC307759, and KC307760), as well as isolate PD592 from potato (JN188227, JN188163, and JN188035), thereby confirming taxonomic placement of the Ohio Ailanthus isolates among those recovered from Ailanthus in Pennsylvania and Virginia. Aligned sequences from one representative isolate, VnAaOH1, were deposited into GenBank as accessions KC307761 (EF), KC307762 (GPD), and KC307763 (TS). In August 2012, the pathogenicity of all six isolates was confirmed by root-dipping 10 healthy 3-week-old A. altissima seedlings (seeds collected in University Park, PA) into conidial suspensions of 1 × 107 cfu/ml, wherein all inoculated seedlings wilted and died within 4 and 9 weeks, respectively. V. nonalfalfae was reisolated from all inoculated seedlings; control seedlings inoculated with distilled water remained asymptomatic. Ohio is the third state from which V. nonalfalfae has been reported to be pathogenic on A. altissima. If V. nonalfalfae proves to be widespread, it may represent a natural biocontrol for the invasive A. altissima. Also, since USDA APHIS evaluates and regulates new potential biocontrol agents on a state-by-state basis, it is important to document each state in which V. nonalfalfae is killing A. altissima, so that in-state inoculum can be used for biocontrol efforts, simplifying the regulatory process. References: (1) P. Inderbitzin et al. 2011 PLoS ONE, 6, e28341, 2011. (2) M. J. Schall and D. D. Davis. Plant Dis. 93:747, 2009. (3) A. L. Snyder et al. Plant Dis. 96:837, 2013.


2014 ◽  
Vol 104 (3) ◽  
pp. 282-292 ◽  
Author(s):  
M. T. Kasson ◽  
D. P. G. Short ◽  
E. S. O'Neal ◽  
K. V. Subbarao ◽  
D. D. Davis

Verticillium wilt, caused by Verticillium nonalfalfae, is currently killing tens of thousands of highly invasive Ailanthus altissima trees within the forests in Pennsylvania, Ohio, and Virginia and is being considered as a biological control agent of Ailanthus. However, little is known about the pathogenicity and virulence of V. nonalfalfae isolates from other hosts on Ailanthus, or the genetic diversity among V. nonalfalfae from confirmed Ailanthus wilt epicenters and from locations and hosts not associated with Ailanthus wilt. Here, we compared the pathogenicity and virulence of several V. nonalfalfae and V. alfalfae isolates, evaluated the efficacy of the virulent V. nonalfalfae isolate VnAa140 as a biocontrol agent of Ailanthus in Pennsylvania, and performed multilocus sequence typing of V. nonalfalfae and V. alfalfae. Inoculations of seven V. nonalfalfae and V. alfalfae isolates from six plant hosts on healthy Ailanthus seedlings revealed that V. nonalfalfae isolates from hosts other than Ailanthus were not pathogenic on Ailanthus. In the field, 100 canopy Ailanthus trees were inoculated across 12 stands with VnAa140 from 2006 to 2009. By 2011, natural spread of the fungus had resulted in the mortality of >14,000 additional canopy Ailanthus trees, 10,000 to 15,000 Ailanthus sprouts, and nearly complete eradication of Ailanthus from several smaller inoculated stands, with the exception of a few scattered vegetative sprouts that persisted in the understory for several years before succumbing. All V. nonalfalfae isolates associated with the lethal wilt of Ailanthus, along with 18 additional isolates from 10 hosts, shared the same multilocus sequence type (MLST), MLST 1, whereas three V. nonalfalfae isolates from kiwifruit shared a second sequence type, MLST 2. All V. alfalfae isolates included in the study shared the same MLST and included the first example of V. alfalfae infecting a non-lucerne host. Our results indicate that V. nonalfalfae is host adapted and highly efficacious against Ailanthus and, thus, is a strong candidate for use as a biocontrol agent.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Harald Berger ◽  
Oliver Maschek ◽  
Erhard Halmschlager

Verticillium nonalfalfae, a soilborne vascular fungus, shows promise for biocontrol of highly invasive Ailanthus altissima strains. This announcement provides draft genome sequences of the aggressive isolate G1/5 (wild-type strain), the highly aggressive isolate Vert56 (improved strain), and the mildly aggressive isolate I3/2, all obtained from symptomatic A. altissima trees in Austria.


Plant Disease ◽  
2015 ◽  
Vol 99 (8) ◽  
pp. 1070-1077 ◽  
Author(s):  
E. S. O’Neal ◽  
D. D. Davis

Verticillium nonalfalfae, causal agent of Verticillium wilt, is being considered as a biocontrol for the highly invasive Ailanthus altissima in Pennsylvania. This soilborne fungus is extremely virulent on Ailanthus and rapidly transmitted from diseased to healthy trees within Ailanthus stands. The rapid transmission of the fungus could be facilitated by root grafts, but neither root graft formation in Ailanthus nor Verticillium transmission by root grafts in trees has been reported. Here, V. nonalfalfae transmission between diseased and healthy Ailanthus trees via intraspecific root grafts and clonal growth is evaluated. Using air-spade excavation, dye translocation, and root graft inoculations, functional root grafts were detected between Ailanthus trees and transmission of V. nonalfalfae across root grafts demonstrated. Inoculation of one Ailanthus parent stem resulted in 187 root sprouts showing Verticillium wilt symptoms 12 months after inoculation. This study revealed that clonal growth and root grafts, normally advantageous growth habits, leave Ailanthus stands vulnerable to widespread V. nonalfalfae infection. This study also broadens the understanding of the Ailanthus-Verticillium pathosystem, growth strategies of invasive Ailanthus, and epidemiology of Verticillium wilt within trees.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 823-835 ◽  
Author(s):  
M. T. Kasson ◽  
E. S. O’Neal ◽  
D. D. Davis

The naturally occurring Verticillium nonalfalfae has been proposed as a biocontrol agent against the highly invasive Ailanthus altissima in the eastern United States. We tested 71 nontarget woody species for susceptibility to the potential biocontrol agent. In the field, only devil’s walkingstick (17% incidence) and striped maple (3%) acquired infections through natural spread from infected A. altissima (100%). Staghorn sumac (16% incidence) also exhibited wilt in close proximity to diseased Ailanthus, although V. nonalfalfae was never recovered. Stem inoculations, which are highly artificial in that they bypass root defenses and flood the xylem with millions of conidia, induced varying levels of wilt and mortality in 10 nontarget species from which V. nonalfalfae was reisolated, although recovery and crown rebuilding occurred following initial wilt in several species including sassafras and northern catalpa. Thirty-seven of the 71 inoculated species exhibited vascular discoloration, although 23 of these species exhibited no outward symptoms (wilt, dieback) for up to 6 years postinoculation. However, V. nonalfalfae was reisolated from three of the 23 species, indicating a tolerant host response. Our results suggest that V. nonalfalfae is generally host-adapted to A. altissima with 78 of 78 A. altissima seed sources from 26 states and Canada showing susceptibility, and offers support for adoption and dissemination of V. nonalfalfae to combat the highly invasive A. altissima.


Sign in / Sign up

Export Citation Format

Share Document