Vibration signal analysis of planetary gear with amplitude, frequency and phase modulation

2021 ◽  
Vol 69 (6) ◽  
pp. 490-499
Author(s):  
Hailong Sun ◽  
Wei Liu

In this paper, the vibration signal of planetary gear with amplitude, frequency and phase modulation is studied. The proposed mathematical model is employed to in- vestigate the modulation behavior of planetary gear. Based on this model, the ampli- tude modulation (AM) sidebands are analyzed to verify the correctness of theoretical calculation by Inalpolat and Kahraman. Then, the frequency modulation (FM) side- bands and phase modulation (PM) sidebands are also illustrated through an exam- ple analysis. The effects of parameters of planetary gear such as number of planets, teeth of sun and planet phasing relationships on the AM, FM and PM sidebands are analyzed. Finally, the specific expression of transmission error, time-varying mesh stiffness and dynamic mesh force including gear manufacturing error is developed. Time history signal and acceleration spectra of gear mesh interface excitations including AM, FM and PM are investigated for the meshes of sun-planet and ring- planet. The results show that gear parameters have important influence on the mod- ulation behavior. Additionally, manufacturing errors can be introduced to predict the sidebands of planetary gear. The amplitude, frequency and phase modulation study are extremely significant for the noise and vibration reduction, especially the fault diagnosis of planetary gear

Author(s):  
Y Hu ◽  
L Ryali ◽  
D Talbot ◽  
A Kahraman

In this study, a theoretical investigation on the overall loaded motion transmission error of planetary gear sets is presented. Planetary gear set load distribution model is employed to predict the input-to-output transmission error of planetary gear sets having distinct planet phasing conditions, to establish nominal transmission error behavior. Impact of carrier manufacturing errors resulting in unequal planet-to-planet load sharing on the gear set transmission error is quantified. Gear manufacturing imperfections such as run-out errors at their relative angles are introduced to observe their signatures on the resultant transmission error. Simplified formulations are presented to combine individual gear mesh transmission error functions with required modifications in order to obtain the overall transmission error. The predicted transmission error time histories are examined in the frequency domain to explore their diagnostic value in determining what errors the gear set possesses.


Author(s):  
Yunbo Yuan ◽  
Wei Liu ◽  
Yahui Chen ◽  
Donghua Wang

Certain operating conditions such as fluctuation of the external torque to planetary gear sets can cause additional sidebands. In this paper, a mathematical model is proposed to investigate the modulation mechanisms due to a fluctuated external torque (FET), and the combined influence of such an external torque and manufacturing errors (ME) on modulation sidebands. Gear mesh interface excitations, namely gear static transmission error excitations and time-varying gear mesh stiffness, are defined in Fourier series forms. Amplitude and frequency modulations are demonstrated separately. The predicted dynamic gear mesh force spectra and radial acceleration spectra at a fixed position on ring gear are both shown to exhibit well-defined modulation sidebands. Comparing with sidebands caused by ME, more complex sidebands appear when taking both FET and ME into account. An obvious intermodulation is found around the fundamental gear mesh frequency between the FET and ME in the form of frequency modulations, however, no intermodulation in the form of amplitude modulations. Additionally, the results indicate that some of the sidebands are cancelled out in radial acceleration spectra mainly due to the effect of planet mesh phasing, especially when only amplitude modulations are present.


2011 ◽  
Vol 86 ◽  
pp. 47-50
Author(s):  
Yu Tang ◽  
Shan Chang ◽  
Zhi Qiang Wang ◽  
Kun Zhang

In order to minimize the fluctuation of gear transmission error (GTE) about the planetary gear transmission. A method was developed to deciding tooth profile modification curves of planetary transmission. According to the condition of the invariable design load, computing the dynamic characteristics of the planetary transmission system under modified and un-modified gear. At the same time, the compare is carried through of the dynamic characteristics for modified and un-modified gear. The results of the dynamic calculation indicate that the profile modification method can make the amplitudes of gear mesh stiffness change calmness and reduce the amplitudes of gear mesh stiffness by this method in paper. At last, the conclusion can be obtained that the tooth profile modification can reduce the vibration and noise of the planetary transmission system.


Author(s):  
B. Boguski ◽  
A. Kahraman

An experimental study on the overall loaded motion transmission error of planetary gear sets is presented in this study. A test rig is designed and procured for the purpose of measuring the input-to-output transmission error of planetary gear sets within a range of input torque. The test matrix includes three distinct phasing conditions (in phase, sequentially phased and counter-phased) of a four-planet gear set as well as two planet tooth profile modifications. Two different power flow conditions with a fixed planet carrier and a fixed ring gear are considered. The transmission error results indicate that the phasing condition of the gear set is the most critical factor resulting in varying levels and numbers of modulation sidebands around the gear mesh orders. Planetary gear sets having in-phase planet meshes exhibit dominant gear mesh harmonic orders with little sideband activity, while sequentially-phased and counter-phased gear sets show an increase in planetary sideband orders associated with the sun, ring and planet gears. In addition, the power flow condition with fixed carrier is shown to have higher root-mean-square amplitudes of transmission error than configuration with a fixed ring gear.


Author(s):  
Ma Hao ◽  
Yao Chuang ◽  
Duan Minghui ◽  
Wei Jufang ◽  
Zhang Xin ◽  
...  

Author(s):  
Shijing Wu ◽  
Haibo Zhang ◽  
Xiaosun Wang ◽  
Zeming Peng ◽  
Kangkang Yang ◽  
...  

Backlash is a key internal excitation on the dynamic response of planetary gear transmission. After the gear transmission running for a long time under load torque, due to tooth wear accumulation, the backlash between the tooth surface of two mating gears increases, which results in a larger and irregular backlash. However, the increasing backlash generated by tooth accumulated wear is generally neglected in lots of dynamics analysis for epicyclic gear trains. In order to investigate the impact of backlash generated by tooth accumulated wear on dynamic behavior of compound planetary gear set, in this work, first a static tooth surface wear prediction model is incorporated with a dynamic iteration methodology to get the increasing backlash generated by tooth accumulated wear for one pair of mating teeth under the condition that contact ratio equals to one. Then in order to introduce the tooth accumulated wear into dynamic model of compound planetary gear set, the backlash excitation generated by tooth accumulated wear for each meshing pair in compound planetary gear set is given under the condition that contact ratio equals to one and does not equal to one. Last, in order to investigate the impact of the increasing backlash generated by tooth accumulated wear on dynamic response of compound planetary gear set, a nonlinear lumped-parameter dynamic model of compound planetary gear set is employed to describe the dynamic relationships of gear transmission under the internal excitations generated by worn profile, meshing stiffness, transmission error, and backlash. The results indicate that the introduction of the increasing backlash generated by tooth accumulated wear makes a significant influence on the bifurcation and chaotic characteristics, dynamic response in time domain, and load sharing behavior of compound planetary gear set.


Author(s):  
Fengxia Lu ◽  
Rupeng Zhu ◽  
Haofei Wang ◽  
Heyun Bao ◽  
Miaomiao Li

A new nonlinear dynamics model of the double helical planetary gear train with 44 degrees of freedom is developed, and the coupling effects of the sliding friction, time-varying meshing stiffness, gear backlashes, axial stagger as well as gear mesh errors, are taken into consideration. The solution of the differential governing equation of motion is solved by variable step-size Runge-Kutta numerical integration method. The influence of tooth friction on the periodic vibration and nonlinear vibration are investigated. The results show that tooth friction makes the system motion become stable by the effects of the periodic attractor under the specific meshing frequency and leads to the frequency delay for the bifurcation behavior and jump phenomenon in the system.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


Sign in / Sign up

Export Citation Format

Share Document