Calculation of statistical absorption coefficient using ensemble averaged surface normal impedance of material

2021 ◽  
Vol 263 (1) ◽  
pp. 5578-5583
Author(s):  
Noriko Okamoto ◽  
Toru Otsru ◽  
Reiji Tomiku ◽  
Masahiro Masuda ◽  
Arisa Tabaru

To predict and control the indoor sound field, it is important to comprehend sound absorption characteristics of building materials. In the previous studies, the authors have proposed an in-situ sound absorption measurement method of materials using ensemble averaging technique, namely EA method. The method yields a simple and efficient in-situ measurement of surface normal impedance of materials at random-incidence. In this paper, the authors calculate the statistical absorption coefficient using the surface normal impedance of material by the EA method to obtain random incidence absorption coefficient. At first, the procedure of calculating the statistical absorption coefficient from the normal impedance by EA method is described. Next, the sound absorption characteristics for five kinds of materials are measured by the EA method and the reverberation room method. Finally, the statistical absorption coefficients are calculated from results obtained by the EA method and are compared with absorption coefficients by the reverberation room method.

2021 ◽  
Vol 263 (2) ◽  
pp. 4532-4537
Author(s):  
Toru Otsuru ◽  
Reiji Tomiku ◽  
Noriko Okamoto ◽  
Siwat Lawanwadeekul

The authors have been published a series of papers on a measurement method for sound absorption characteristics of materials using ensemble averaging technique, i.e., EA method. The papers' results included measurement mechanisms, measurement uncertainty, and so on. Herein, to examine adaptability, especially in in-situ conditions, the EA method is applied to measure absorption characteristics of materials installed in two gymnasiums. A glass-wool panel with the dimension of 0.5 m by 0.5 m by 0.05 m and with the density of 32 kg m^-3 was brought around and measured to check the measurement consistency. Several measurements were conducted during badminton plays were undergoing. Measured sound absorption coefficients revealed that most results agree well with those measured in reverberation rooms. Certain improvement is necessary for the specimen brought to the in-situ measurement to keep the consistency. The inconsistency is considered to originate from unstable conditions between the specimen and floor.


2009 ◽  
Vol 1188 ◽  
Author(s):  
Miao Lu ◽  
Carl Hopkins ◽  
Yuyuan Zhao ◽  
Gary Seiffert

AbstractThis paper investigates the sound absorption characteristics of porous steel samples manufactured by Lost Carbonate Sintering. Measurements of the normal incidence sound absorption coefficient were made using an impedance tube for single-layer porous steel discs and assemblies comprising four layers of porous steel discs. The sound absorption coefficient was found not to vary significantly with pore size in the range of 250-1500 μm. In general, the absorption coefficient increases with increasing frequency and increasing thickness, and peaks at specific frequencies depending on the porosity. An increase in porosity tends to increase the frequency at which the sound absorption coefficient reaches this peak. An advantage was found in using an assembly of samples with gradient porosities of 75%-70%-65%-60% as it gave higher and more uniform sound absorption coefficients than an assembly with porosities of 75%.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 30-35
Author(s):  
Valery Murzinov ◽  
Pavel Murzinov ◽  
Irina Ivanovna

This article provides an overview of modern soundproof materials and structures used for acoustic insulation. Presently, we can find plenty of such noise insulation and sound absorption materials. One of the popular means to reduce noise and control sound today is the acoustic panels able to suppress and absorb different sounds. The article also analyses the effectiveness of acoustic and sound protection materials used in the industrial sphere. The comparative analysis of the sound protection and absorption effectiveness is carried out using sound absorption coefficients. It also presents the construction of a sound suppressing lightweight structured panel designed by the authors. The authors noted that these panels have better characteristics in comparison with other modern sound protection materials.


2021 ◽  
Vol 263 (1) ◽  
pp. 5571-5577
Author(s):  
Reiji Tomiku ◽  
Noriko Okamoto ◽  
Toru Otsuru ◽  
Shun Iwamoto ◽  
Shoma Suzuki

The absorption coefficients in a reverberation room are most representative measure for evaluating absorption performance of architectural materials. However, it is well known that measurement results of the coefficient vary according to a room shape of the measurement and area of the specimen. Numerical analyses based on wave acoustics are effective tools to investigate these factors on absorption coefficient measurement in reverberation room. In this study, sound fields for the measurement of absorption coefficient in reverberation room are analyzed by time domain finite element method (TDFEM). This study shows effectiveness of the analysis for investigation on causes of variation in the measurement results and improvement methods of the measurement. First, some measurement sound fields for absorption coefficient in reverberation rooms the walls of which are incline or decline are analyzed by the TDFEM. Next, reverberation times in each sound fields are calculated from the results obtained by TDFEM and the absorption coefficients are evaluated from the reverberation time of the room with and without specimen. Finally, the relationships among room shape, degree of inclination of the wall, the sound absorption coefficient of the specimen, frequencies and the measurement absorption coefficient are investigated.


2020 ◽  
Vol 307 ◽  
pp. 291-296 ◽  
Author(s):  
Meifal Rusli ◽  
Fakhrur Rahman ◽  
Hendery Dahlan ◽  
Gusriwandi ◽  
Mulyadi Bur

A micro-perforated panel (MPP) works as a Helmholtz-type resonance absorber formed by an air-gab cavity in order to minimize the reflected sound effectively at a selective resonance frequency. Furthermore, the use of natural fibers as sound absorbing materials recently has attracted more attention because it is completely biodegradable, environmental friendly and more economical. In this paper, the combination of MPP and natural fiber as sound absorptive material is investigated. The MPP is made of a transparent acrylic board with 1.5 mm thickness and backed by a coconut fiber panel. The effect of the fiber panel that inserted in the air-gab cavity to the sound absorption characteristic of a single leaf MPP is observed. Sound absorption coefficient is measured by transfer function method using two microphones-impedance tube. It is found that the sandwich model of MPP backed by a coconut fiber changes the sound absorption characteristics of MPP by shifting the maximum absorption coefficient into the lower frequency and making a wider band of frequency absorption. Moreover, the air-gab cavity between MPP and fiber panel give fewer contribution to construct the MPP frequency resonant than the natural fiber panel one.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5126
Author(s):  
Dhayalini Balasubramanian ◽  
Senthil Rajendran ◽  
Bhuvanesh Srinivasan ◽  
Nirmalakumari Angamuthu

The current study deals with the analysis of sound absorption characteristics of foxtail millet husk powder. Noise is one the most persistent pollutants which has to be dealt seriously. Foxtail millet is a small seeded cereal cultivated across the world and its husk is less explored for its utilization in polymer composites. The husk is the outer protective covering of the seed, rich in silica and lingo-cellulose content making it suitable for sound insulation. The acoustic characterization is done for treated foxtail millet husk powder and polypropylene composite panels. The physical parameters like fiber mass content, density, and thickness of the composite panel were varied and their influence over sound absorption was mapped. The influence of porosity, airflow resistance, and tortuosity was also studied. The experimental result shows that 30-mm thick foxtail millet husk powder composite panel with 40% fiber mass content, 320 kg/m3 density showed promising sound absorption for sound frequency range above 1000 Hz. We achieved noise reduction coefficient (NRC) value of 0.54. In view to improve the performance of the panel in low-frequency range, we studied the efficiency of incorporating air gap and rigid backing material to the designed panel. We used foxtail millet husk powder panel of density 850 kg/m3 as rigid backing material with varying air gap thickness. Thus the composite of 320 kg/m3 density, 30-mm thick when provided with 35-mm air gap and backing material improved the composite’s performance in sound frequency range 250 Hz to 1000 Hz. The overall sound absorption performance was improved and the NRC value and average sound absorption coefficient (SAC) were increased to 0.7 and 0.63 respectively comparable with the commercial acoustic panels made out of the synthetic fibers. We have calculated the sound absorption coefficient values using Delany and Bezlay model (D&B model) and Johnson–Champoux–Allard model (JCA model) and compared them with the measured sound absorption values.


2013 ◽  
Vol 471 ◽  
pp. 273-278
Author(s):  
Mohd Zamri Bin Jusoh ◽  
Mohamad Ngasri Dimon ◽  
Nazli Bin Che Din ◽  
Toru Otsuru ◽  
You Kok Yeow

An application of In-Situ method of measuring sound absorption coefficient on the surface of direct piercing carved wood panel using the concept of ensemble averaged is discussed. The method offer an easier way to measure the absorption performance for each individual aperture of carved wood panel with floral pattern which was replicated from one of the oldest mosque, namely Masjid Abidin located in Terengganu, Malaysia. Two pieces of 20 mm thick of cengal wood (Neobalanocarpus heimii) with 30% and 40% perforation ratio were respectively measured in a reverberation room in order to determine the value of . At lower frequencies (0.1 kHz-1.5 kHz), the measured values of for both direct piercing carved wood panel with floral pattern (Daun Sireh motif) are shown that the sound absoption for both direct piercing carved wood panel are in perform level. From the measurements, clearly, the installation of the direct piercing carved wood panel with floral pattern (Daun Sireh motif) in the Masjid Abidin can provide better air circulation and additional natural sunlight, as well as better sound intelligibility inside the building.


2021 ◽  
Vol 42 (3) ◽  
pp. 154-157
Author(s):  
Siwat Lawanwadeekul ◽  
Reiji Tomiku ◽  
Noriko Okamoto ◽  
Toru Otsuru ◽  
Masahiro Masuda ◽  
...  

One of the sources of noise pollution to environment is from the consumption of electrical and mechanical appliances usage at home and industries. Growth development and advancement of heavy equipment in construction work further emphasize the necessity used of new technologies for noise reduction. The best technique of control or reducing of noise is by using the materials that can absorb the noise by materials itself. Potential materials from agricultural waste as sound absorber were identified. There are two main objectives in this study; First is to produce acoustic absorber by using natural materials. Second is to identify their sound absorption coefficients. The samples were fabricated using the raw materials from banana stem, grass, palm oil leaves and lemongrass mixed with binding agents of polyurethane and hardener to the ratio of 1:4. The diameters of the samples consist of 28mm and 100mm and the thickness is 10mm. The samples sound absorption coefficients were measured according to standards ASTM E1050-98 / ISO 105342-2 (Impedance tube method). Sound absorption coefficient of the materials depends on frequencies choose. The frequencies values used in this study were in the range from 500Hz to 4500Hz. Material made from grass have a higher average sound absorption coefficient value which is 0.553. All tested samples also can be categories under class D type of materials based on sound absorption coefficient value.


2018 ◽  
Vol 49 ◽  
pp. 00078
Author(s):  
Marcelina Olechowska ◽  
Artur Nowoświat ◽  
Jan Ślusarek ◽  
Mateusz Latawiec

Reverberation time in rooms depends on many factors, e.g. cubature, surface of envelopes, sound absorption coefficient of materials used for the construction of the envelopes, geometry of rooms or the distribution of sound absorbing materials. The arrangement of sound absorbing materials in rooms has an impact on the dispersion of acoustic field, yet theoretical calculation models do not take into account this impact. According to these models, regardless of the arrangement of sound absorbing materials, the reverberation time in a room will remain unchanged. The present paper investigates the above problem by means of computer simulations. For the needs of the simulation, three rooms with different dimensions were adopted, i.e. type 'p' - a cuboidal room with a square base, type 'd' - a cuboidal room (with one side of the 'p' room lengthened), type 'w' - a cuboidal room (with the height of the room lengthened 'p'). During the simulation, the way of acoustic field dispersion was being changed and its influence on the reverberation time in the rooms was being determined. The authors investigated two situations. The first one involved a non-dampened room, in which the sound absorbing material was being arranged differently. The second one involved a welldampened room, and the dispersion of sound field was analyzed depending on the location of the reflecting material.


Sign in / Sign up

Export Citation Format

Share Document