Practical Computation in the Techno-Economic Analysis of the Production of Magnesium Oxide Nanoparticles using Sol-gel Method

Author(s):  
Jessica Veronica ◽  
◽  
Lidia Intan Febriani ◽  
Citra Nurhashiva ◽  
Risti Ragadhita ◽  
...  

The purpose of this study was to determine the feasibility of a project for the manufacture of magnesium oxide nanoparticles using the sol-gel method by evaluating both technically and economically. Evaluation from the technical side is determined by stoichiometric calculations and evaluation of the initial factory design, while the evaluation from the economic side is determined by several parameters to determine the benefits of the project to be established (Gross Profit Margin, Internal Rate Return, Break-Even Point, Payback Period, and Cumulative Net Present Values). Some of these economic evaluation parameters were analyzed to inform the production potential of magnesium oxide nanoparticles, such as determining the level of profitability of a project (Gross Profit Margin), predicting the length of time required for an investment to return the initial capital expenditure (Payback Period), predicting the condition of a production project in the form of a production function in years (Cumulative Net PresentValue), etc. The results of the technical analysis show that this project can produce 1,425 kg of magnesium oxide nanoparticles per day and the total cost of the equipment purchased is 45,243 USD. Payback Period analysis shows that the investment will be profitable after more than three years. To ensure project feasibility, the project is estimated from ideal to worst-case conditions in production, including salary, sales, raw materials, utilities, as well as external conditions such as taxes

2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jegadeeswari A ◽  
Nivetha S

Magnesium oxide was hygroscopic solid mineral that occurs naturally as periclase.Magnesium oxide had high thermal conductivity; it gets heated when the electricity was passed through it. Magnesia crucible had a stability of 2400°C in air, 1700°C in reducing atmosphere. Magnesium oxide nanoparticles were obtained from the mixture of magnesium nitrate as precursor and sodium hydroxide as precipitating agent by sol-gel method. Finally,the resultant white crystalline powder of MgO was annealed at various temperatures of 80°C, 135°C and 180°C. The analytical studies (XRD, SEM FTIR, EDAX) reveals the morphological characterization of MgO nanoparticles. The Scanning Electron Microscopy (SEM) indicates the structures of MgO nanoparticles. The crystal size of MgO nanoparticles was obtained by X-Ray Diffraction (XRD). The optical properties of the sample were obtained by UV- Visible spectroscopy. Fourier Transform infrared spectroscopy indicates powdered composition of the sample. EDAX indicates elementary composition of the MgO nanoparticles.


Author(s):  
Lidia Intan Febriani ◽  
◽  
Citra Nurhashiva ◽  
Jessica Veronica ◽  
Risti Ragadhita ◽  
...  

This study aims to analyze the feasibility of a project for the production of magnesium oxide nanoparticles using precipitation methods on a large scale. The feasibility analysis of this project was determined using an evaluation from an economic and engineering perspective. Evaluation from an engineering perspective is determined by the evaluation of the initial factory design and stoichiometric calculations. Meanwhile, the evaluation from an economic perspective is determined by several parameters, such as Payback Period, Gross Profit Margin, Cumulative Net Present Value, etc. The analysis results show that the production of magnesium oxide nanoparticles using the precipitation method can be carried out on an industrial scale. In this project, 11,250 kg ofmagnesium oxide nanoparticles were obtained per day, and the total profit earned was 1,881,184,752.91 USD in 10 years. Payback Period analysis shows that the investment will be profitable after more than three years. To ensure project feasibility, projects are estimated from ideal to worst-case conditions in production, including salary, sales, raw materials, utilities, and external conditions such as taxes


2019 ◽  
Vol 9 (3) ◽  
pp. 362-370 ◽  
Author(s):  
D. Vaya ◽  
Meena ◽  
B.K. Das

Background: The properties of the material are altered when material size shifted towards nano-regime. This feature could be used for wastewater treatment process using model pollutant such as dyes. Recently, nanoparticles are synthesized by a green chemical route using different capping agents. This is the reason we adopt starch as green capping agent along with sol-gel method. Objective: To synthesize cobalt oxide nanoparticles by green chemical route and utilized it in degradation of dyes. Methods: Synthesis of cobalt oxide nanoparticles by sol-gel method using starch as a capping agent. The characteristics of surface modifications were investigated by UV-VIS, TEM, SEM, XRD and FTIR techniques. Results: Cobalt oxide nanoparticles synthesized and inhibited photocatalytic activity. Conclusion: Deactivation of photocatalytic activity due to complex nature of starch. This property can be used elsewhere as in light shielding applications to coat and protect surfaces in order to keep them cool and safe from damage as in the painting of vehicles, roofs, buildings, water tanks, etc.


Particuology ◽  
2011 ◽  
Vol 9 (5) ◽  
pp. 471-474 ◽  
Author(s):  
Xiuhua Li ◽  
Xiujuan Xu ◽  
Xin Yin ◽  
Chunzhong Li ◽  
Jianrong Zhang

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Parisa Shafiee ◽  
Mehdi Reisi Nafchi ◽  
Sara Eskandarinezhad ◽  
Shirin Mahmoudi ◽  
Elahe Ahmadi

Zinc oxide nanoparticles (ZnO) exhibit numerous characteristics such as biocompatibility, UV protection, antibacterial activity, high thermal conductivity, binding energy, and high refractive index that make them ideal candidates to be applied in a variety of products like solar cells, rubber, cosmetics, as well as medical and pharmaceutical products. Different strategies for ZnO nanoparticles’ preparation have been applied: sol-gel method, co-precipitation method, etc. The sol-gel method is an economic and efficient chemical technique for nanoparticle (NPs) generation that has the ability to adjust the structural and optical features of the NPs. Nanostructures are generated from an aqueous solution including metallic precursors, chemicals for modifying pH using either a gel or a sol as a yield. Among the various approaches, the sol-gel technique was revealed to be one of the desirable techniques for the synthesis of ZnO nanoparticles. In this review, we explain some novel investigations about the synthesis of zinc oxide nanoparticles via sol-gel technique and applications of sol-gel zinc oxide nanoparticles. Furthermore, we study recent sol-gel ZnO nanoparticles, their significant characteristics, and their applications in biomedical applications, antimicrobial packaging, drug delivery, semiconductors, biosensors, catalysts, photoelectron devices, and textiles.


Author(s):  
Rizwan Wahab ◽  
S.G. Ansari ◽  
M.A. Dar ◽  
Young Soon Kim ◽  
Hyung Shik Shin

Sign in / Sign up

Export Citation Format

Share Document