Nanotechnologies. Aerosol generation for air exposure studies of nano-objects and their aggregates and agglomerates (NOAA)

2017 ◽  
2020 ◽  
pp. bjophthalmol-2020-317214
Author(s):  
Hasan Naveed ◽  
Fong May Chew ◽  
Hanbin Lee ◽  
Edward Hughes ◽  
Mayank A Nanavaty

PurposeTo assess whether pars plana vitrectomy (PPV) is an aerosol-generating procedure (AGP) in an ex vivo experimental model.MethodsIn this ex vivo study on 10 porcine eyes, optical particle counter was used to measure particles ≤10 μm using cumulative mode in the six in-built channels: 0.3 μm, 0.5 μm, 1 μm, 2.5 μm, 5 μm and 10 μm aerosols during PPV. Two parts of the study were as follows: (1) to assess the pre-experimental baseline aerosol count in the theatre environment where there are dynamic changes in temperature and humidity and (2) to measure aerosol generation with 23-gauge and 25-gauge set-up. For each porcine eye, five measurements were taken for each consecutive step in the experiment including pre-PPV, during PPV, fluid–air exchange (FAX) and venting using a flute with 23-gauge set-up and a chimney with 25-gauge set-up. Therefore, a total of 200 measurements were recorded.ResultsWith 23-gauge and 25-gauge PPV, there was no significant difference in aerosol generation in all six channels comparing pre-PPV versus PPV or pre-PPV versus FAX. Venting using flute with 23-gauge PPV showed significant reduction of aerosol ≤1 μm. Air venting using chimney with 25-gauge set-up showed no significant difference in aerosol of ≤1 μm. For cumulative aerosol counts of all particles measuring ≤5 μm, compared with pre-PPV, PPV or FAX, flute venting in 23-gauge set-up showed significant reduction unlike the same comparison for chimney venting in 25-gauge set-up.ConclusionPPV and its associate steps do not generate aerosols ≤10 μm with 23-gauge and 25-gauge set-ups.


2020 ◽  
Vol 4 ◽  
pp. 239784732097975
Author(s):  
Stéphanie Boué ◽  
Didier Goedertier ◽  
Julia Hoeng ◽  
Anita Iskandar ◽  
Arkadiusz K Kuczaj ◽  
...  

E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.


2021 ◽  
Vol 13 (9) ◽  
pp. 4933
Author(s):  
Saimar Pervez ◽  
Ryuta Maruyama ◽  
Ayesha Riaz ◽  
Satoshi Nakai

Ambient air pollution and its exposure has been a worldwide issue and can increase the possibility of health risks especially in urban areas of developing countries having the mixture of different air pollution sources. With the increase in population, industrial development and economic prosperity, air pollution is one of the biggest concerns in Pakistan after the occurrence of recent smog episodes. The purpose of this study was to develop a land use regression (LUR) model to provide a better understanding of air exposure and to depict the spatial patterns of air pollutants within the city. Land use regression model was developed for Lahore city, Pakistan using the average seasonal concentration of NO2 and considering 22 potential predictor variables including road network, land use classification and local specific variable. Adjusted explained variance of the LUR models was highest for post-monsoon (77%), followed by monsoon (71%) and was lowest for pre-monsoon (70%). This is the first study conducted in Pakistan to explore the applicability of LUR model and hence will offer the application in other cities. The results of this study would also provide help in promoting epidemiological research in future.


Author(s):  
Camila Quartim de Moraes Bruna ◽  
Caroline Lopes Ciofi-Silva ◽  
Anderson Vicente de Paula ◽  
Lucy Santos Villas Boas ◽  
Noely Evangelista Ferreira ◽  
...  

AbstractAerosolization may occur during reprocessing of medical devices. With the current coronavirus disease 2019 pandemic, it is important to understand the necessity of using respirators in the cleaning area of the sterile processing department. To evaluate the presence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in the air of the sterile processing department during the reprocessing of contaminated medical devices. Air and surface samples were collected from the sterile processing department of two teaching tertiary hospitals during the reprocessing of respiratory equipment used in patients diagnosed with coronavirus disease 2019 and from intensive care units during treatment of these patients. SARS-CoV-2 was detected only in 1 air sample before the beginning of decontamination process. Viable severe acute respiratory syndrome coronavirus 2 RNA was not detected in any sample collected from around symptomatic patients or in sterile processing department samples. The cleaning of respiratory equipment does not cause aerosolization of SARS-CoV-2. We believe that the use of medical masks is sufficient while reprocessing medical devices during the coronavirus disease 2019 pandemic.


Author(s):  
Kali M Horn ◽  
Michelle E Fournet ◽  
Kaitlin A Liautaud ◽  
Lynsey N Morton ◽  
Allie M Cyr ◽  
...  

Abstract The intertidal zone is characterized by persistent, tidally-driven fluctuations in both abiotic (e.g., temperature, [O2], salinity) and biotic (e.g., food availability, predation) factors, which make this a physiologically challenging habitat for resident organisms. The relative magnitude and degree of variability of environmental stress differs between intertidal zones, with the most extreme physiological stress often being experienced by organisms in the high intertidal. Given that so many of the constantly shifting parameters in this habitat are primary drivers of metabolic rate (e.g., temperature, [O2], food availability), we hypothesized that sessile conspecifics residing in different tidal zones would exhibit distinct ‘metabolic phenotypes,’ a term we use to collectively describe the organisms’ baseline metabolic performance and capacity. To investigate this hypothesis, we collected acorn barnacles (Balanus glandula) from low, mid, and high intertidal positions in San Luis Obispo Bay, CA and measured a suite of biochemical (whole-animal citrate synthase (CS) and lactate dehydrogenase (LDH) activity, aerial [D-lactate]), physiological (O2 consumption rates), morphological (body size) and behavioral (e.g., cirri beat frequency, % time operculum open) indices of metabolism. We found tidal zone-dependent differences in B. glandula metabolism that primarily related to anaerobic capacity, cirral activity patterns and body size. Barnacles from the low intertidal tended to have a greater capacity for anaerobic metabolism (i.e., increased LDH activity, increased baseline [D-lactate]), have reduced cirral beating activity—and presumably reduced feeding—when submerged, and be smaller in size compared to conspecifics in the high intertidal. We did not, however, see any D-lactate accumulation in barnacles from any tidal height throughout the 96 h of air exposure. This trend indicates that the enhanced capacity of low intertidal barnacles for anaerobic metabolism may have evolved to support metabolism during more prolonged episodes of emersion or during events other than emersion (e.g., coastal hypoxia, predation). There were also no significant differences in CS activity or baseline oxygen consumption rates (in air or seawater at 14˚C) across tidal heights, which implies that aerobic metabolic capacity may not be as sensitive to tidal position as anaerobic processes. Understanding how individuals occupying different shore heights differ in their metabolic capacity becomes increasingly interesting in the context of global climate change, given that the intertidal zone is predicted to experience even greater extremes in abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document