Requirements for the provision of secure remote services for fire safety systems and security systems

2021 ◽  
2020 ◽  
Vol 62 (12) ◽  
pp. 1187-1191
Author(s):  
Osman H. Mete ◽  
Halil Kayar

Abstract Traffic accidents are increasing as a result of an increasing number of vehicles and population growth in recent years. Active and passive safety systems are used in the vehicles we use today to reduce traffic accidents and prevent casualties. One of the passive security systems is the crush box (crashworthiness). It absorbs the energy generated during a crash by plastic deformation. In this study, tube height, diameter and thickness parameters were kept constant and degrees of conicity were varied 0°(flat tube),3°,7°,10°,12° and 15° The effects of conical crush boxes on axial crush behavior and their energy absorption ability, were investigated by Ls-Dyna explicit dynamic software.


2020 ◽  
Vol 10 (24) ◽  
pp. 8918
Author(s):  
Samson Tan ◽  
Darryl Weinert ◽  
Paul Joseph ◽  
Khalid Moinuddin

The current paper presents an application of an alternative probabilistic risk assessment methodology that incorporates technical, human, and organizational risks (T-H-O-Risk) using Bayesian network (BN) and system dynamics (SD) modelling. Seven case studies demonstrate the application of this holistic approach to the designs of high-rise residential buildings. An incremental risk approach allows for quantification of the impact of human and organizational errors (HOEs) on different fire safety systems. The active systems considered are sprinklers, building occupant warning systems, smoke detectors, and smoke control systems. The paper presents detailed results from T-H-O-Risk modelling for HOEs and risk variations over time utilizing the SD modelling to compare risk acceptance in the seven case studies located in Australia, New Zealand, Hong Kong, Singapore, and UK. Results indicate that HOEs impact risks in active systems up to ~33%. Large variations are observed in the reliability of active systems due to HOEs over time. SD results indicate that a small behavioral change in ’risk perception’ of a building management team can lead to a very large risk to life variations over time through the self-reinforcing feedback loops. The quantification of difference in expected risk to life due to technical, human, and organizational risks for seven buildings for each of 16 trial designs is a novel aspect of this study. The research is an important contribution to the development of the next generation building codes and risk assessment methods.


1990 ◽  
Vol 8 (2) ◽  
pp. 147-158 ◽  
Author(s):  
T. J. Shields ◽  
G. W. Silcock ◽  
H. A. Donegan
Keyword(s):  

2018 ◽  
Vol 121 ◽  
pp. 21-30
Author(s):  
Kamil Białek ◽  
Jacek Paś

The article presents the results of research electric and magnetic fields in the field of higher frequencies, which are produced by electronic security systems in large logistics areas. The paper also presents the background of the electromagnetic environment. Distorted electromagnetic environment can interfere with the operation of electrical and electronic equipment that are used in the railway area. Particular attention has been paid to the impact of electromagnetic interference on selected electronic security systems.


2014 ◽  
Vol 663 ◽  
pp. 366-372 ◽  
Author(s):  
Zambri Harun ◽  
Muhammad Saiful bin Sahari ◽  
Taib Iskandar Mohamad

The design of the ventilation and fire safety systems for the Johor Bahru Sentral, a semi-underground train station, part of the Integrated Custom, Immigration and Quarantine Complex (ICIQ) is based on normal Malaysian Standards (MS), British Standards and the local fire department’s requirements. However, the large and complex space in the underground station coupled with scheduled diesel-powered locomotives which frequent the station by stopping or passing require detailed simulations. Both ventilation and the fire safety systems employ Computational Fluid Dynamic (CFD) methods to provide realistic balance against the typical calculations based on spread sheets and certain design software. This study compares smoke simulations results performed by the mechanical and fire consultants with the simulations carried out through this project. An assumption of a locomotive catches fire near the main platform is made. The burning locomotive is the source of the smoke while the occupants on platforms and waiting areas are the subjects to escape safely. The process of the simulation includes modelling and meshing processes on the structure of the railway station imported from Inventor CAD Autodesk software drawing. The CFD simulations are performed using Star-CCM+. The smokes flow around the building with buoyancy forces and extracted via exhaust fans. Through these simulations, we found that when a locomotive catches fire, the passengers could evacuate the building safely before the fire department machinery arrives. Furthermore, we notice that the ventilation fans activation based on detection of hazardous gases may not be efficient way to remove the latter. A schedule clean-up sync with train arrivals effectively removes toxic gas.


Sign in / Sign up

Export Citation Format

Share Document