Faculty Opinions recommendation of Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites.

Author(s):  
Judith S Eisen
Keyword(s):  
2017 ◽  
Vol 13 (10) ◽  
pp. 6552-6557
Author(s):  
E.Wiselin Kiruba ◽  
Ramar K.

Amalgamation of compression and security is indispensable in the field of multimedia applications. A novel approach to enhance security with compression is discussed in this  research paper. In secure arithmetic coder (SAC), security is provided by input and output permutation methods and compression is done by interval splitting arithmetic coding. Permutation in SAC is susceptible to attacks. Encryption issues associated with SAC is dealt in this research method. The aim of this proposed method is to encrypt the data first by Table Substitution Box (T-box) and then to compress by Interval Splitting Arithmetic Coder (ISAC). This method incorporates dynamic T-box in order to provide better security. T-box is a method, constituting elements based on the random output of Pseudo Random Generator (PRNG), which gets the input from Secure Hash Algorithm-256 (SHA-256) message digest. The current scheme is created, based on the key, which is known to the encoder and decoder. Further, T-boxes are created by using the previous message digest as a key.  Existing interval splitting arithmetic coding of SAC is applied for compression of text data. Interval splitting finds a relative position to split the intervals and this in turn brings out compression. The result divulges that permutation replaced by T-box method provides enhanced security than SAC. Data is not revealed when permutation is replaced by T-box method. Security exploration reveals that the data remains secure to cipher text attacks, known plain text attacks and chosen plain text attacks. This approach results in increased security to Interval ISAC. Additionally the compression ratio  is compared by transferring the outcome of T-box  to traditional  arithmetic coding. The comparison proved that there is a minor reduction in compression ratio in ISAC than arithmetic coding. However the security provided by ISAC overcomes the issues of compression ratio in  arithmetic coding. 


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Sergei I Agulnik ◽  
Nancy Garvey ◽  
Sarah Hancock ◽  
Ilya Ruvinsky ◽  
Deborah L Chapman ◽  
...  

Abstract The T-box genes comprise an ancient family of putative transcription factors conserved across species as divergent as Mus musculus and Caenorhabditis elegans. All T-box gene products are characterized by a novel 174-186amino acid DNA binding domain called the T-box that was first discovered in the polypeptide products of the mouse T locus and the Drosophila melanogaster optomotor-blind gene. Earlier studies allowed the identification of five mouse T-box genes, T, Tbx1-3, and Tbr1, that all map to different chromosomal locations and are expressed in unique temporal and spatial patterns during embryogenesis. Here, we report the discovery of three new members of the mouse T-box gene family, named Tbx4, Tbx5, and Tbx6. Two of these newly discovered genes, Tbx4 and Tbx5, were found to be tightly linked to previously identified T-box genes. Combined results from phylogenetic, linkage, and physical mapping studies provide a picture for the evolution of a T-box subfamily by unequal crossing over to form a two-gene cluster that was duplicated and dispersed to two chromosomal locations. This analysis suggests that Tbx4 and Tbx5 are cognate genes that diverged apart from a common ancestral gene during early vertebrate evolution.


2021 ◽  
Vol 22 (13) ◽  
pp. 6775
Author(s):  
Roman Myasnikov ◽  
Andreas Brodehl ◽  
Alexey Meshkov ◽  
Olga Kulikova ◽  
Anna Kiseleva ◽  
...  

Left ventricular non-compaction cardiomyopathy (LVNC) is a rare heart disease, with or without left ventricular dysfunction, which is characterized by a two-layer structure of the myocardium and an increased number of trabeculae. The study of familial forms of LVNC is helpful for risk prediction and genetic counseling of relatives. Here, we present a family consisting of three members with LVNC. Using a next-generation sequencing approach a combination of two (likely) pathogenic nonsense mutations DSG2-p.S363X and TBX20-p.D278X was identified in all three patients. TBX20 encodes the cardiac T-box transcription factor 20. DSG2 encodes desmoglein–2, which is part of the cardiac desmosomes and belongs to the cadherin family. Since the identified nonsense variant (DSG2-p.S363X) is localized in the extracellular domain of DSG2, we performed in vitro cell transfection experiments. These experiments revealed the absence of truncated DSG2 at the plasma membrane, supporting the pathogenic relevance of DSG2-p.S363X. In conclusion, we suggest that in the future, these findings might be helpful for genetic screening and counseling of patients with LVNC.


2021 ◽  
Vol 22 (14) ◽  
pp. 7522
Author(s):  
Yassin Elfaki ◽  
Juhao Yang ◽  
Julia Boehme ◽  
Kristin Schultz ◽  
Dunja Bruder ◽  
...  

During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood, and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated. Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7 post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that T-bet+ but not T-bet− Tregs are epigenetically stabilized during IAV-induced infection in the lung.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208343 ◽  
Author(s):  
Lucy Cooper ◽  
Lauren Hailes ◽  
Amania Sheikh ◽  
Colby Zaph ◽  
Gabrielle T. Belz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document