scholarly journals Faculty Opinions recommendation of Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo.

Author(s):  
Danny N Dhanasekaran
Zygote ◽  
1993 ◽  
Vol 1 (2) ◽  
pp. 103-112 ◽  
Author(s):  
D. Michael O'Sullivan ◽  
Martin H. Johnson ◽  
Josie M.L. McConnell

Staurosporine, an inhibitor of protein kinase activity, causes premature intercellular flattening of blastomeres but does not induce their premature polarisation. The flattening induced is calcium dependent, is reversed transiently at mitosis and requires the continuing presence of the drug. Staurosporine also blocks the decompacting effect of phorbol ester on 8-cell embryos.


Zygote ◽  
1999 ◽  
Vol 7 (4) ◽  
pp. 293-300 ◽  
Author(s):  
Maria A. Ciemerych ◽  
Bernard Maro ◽  
Jacek Z. Kubiak

The duration of M-phase is largely determined by the time necessary for the formation of a functional metaphase spindle and the correct alignment of all chromosomes on the metaphase plate. The spindle assembly checkpoint prevents the exit from M-phase before the proper alignment of all chromosomes on a metaphase plate in many cell types. In the present paper we show that the first mitotic M-phase of the mouse embryo lasts about 119 min, while the second embryonic M-phase lasts only about 70 min. Histone H1 kinase is activated rapidly during nuclear envelope breakdown in both mitoses. Its maximum, however, is followed by a plateau only during the first mitosis. In the second mitosis, the inactivation of histone H1 kinase activity follows its maximum directly. Histone H1 kinase is more stable in the cytoplasts obtained from mouse embryos during the first embryonic M-phase than during the second one. The stability of histone H1 kinase is greatly increased by the presence of the mitotic apparatus in both M-phases. The mitotic spindle assembly during the first and the second mitoses differs and the first metaphase spindle is stabilised during the period of maximum histone H1 kinase activity. These data show that an unknown developmentally regulated mechanism controls the duration of the two first mitoses in the mouse embryo.


Author(s):  
Elizabeth S. Priori ◽  
T. Shigematsu ◽  
B. Myers ◽  
L. Dmochowski

Spontaneous release of type C virus particles in long-term cultures of mouse embryo cells as well as induction of similar particles in mouse embryo cell cultures with IUDR or BUDR have been reported. The presence of type C virus particles in cultures of normal rat embryos has not been reported.NB-1, a culture derived from embryos of a New Zealand Black (NB) rat (rats obtained from Mr. Samuel M. Poiley, N.C.I., Bethesda, Md.) and grown in McCoy's 5A medium supplemented with 20% fetal calf serum was passaged weekly. Extracellular virus particles similar to murine leukemia particles appeared in the 22nd subculture. General appearance of cells in passage 23 is shown in Fig. 1. Two budding figures and one immature type C virus particle may be seen in Fig. 2. The virus particles and budding were present in all further passages examined (currently passage 39). Various stages of budding are shown in Figs. 3a,b,c,d. Appearance of a mature virus particle is shown in Fig. 4.


Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


Author(s):  
A.E. Sutherland ◽  
P.G. Calarco ◽  
C.H. Damsky

Cell-extracellular matrix (ECM) interactions mediated by the integrin family of receptors are critical for morphogenesis and may also play a regulatory role in differentiation during early development. We have examined the onset of expression of individual integrin subunit proteins in the early mouse embryo, and their roles in early morphogenetic events. As detected by immunoprecipitation, the α6, αV, β1, and β3 subunits are detected as early as the 4-cell stage, α5 at the hatched blastocyst stage and αl and α3 following blastocyst attachment. We tested the role of these integrins in the attachment and migratory activity of two cell populations of the early mouse embryo: the trophoblast giant cells, which invade the uterine stroma and ultimately contribute to the chorio-allantoic placenta, and the parietal endoderm, which migrates over the inner surface of the trophoblast and ultimately forms Reichert's membrane and the parietal yolk sac. Experiments were done in serum-free medium on substrates coated with laminin (Ln) and fibronectin (Fn). Trophoblast outgrowth occurs on Ln and its E8 fragment (long arm), but not on the E1’ fragment (cross region) (Figs. 1, 2 ). This outgrowth is inhibited by anti-E8, anti-Ln, and by the anti-β1 family antiserum anti-ECMR, but not by anti-αV or the function-perturbing GoH3 antibody that recognizes the α6/β1 integrin, a major Ln (E8) receptor. This suggests that trophoblast outgrowth on Ln or E8 is mediated by a different β1 integrin such as α3/β1. Early stages of trophoblast outgrowth (up to 48 hours) on Fn are inhibited by anti-Fn and by function-perturbing anti-αV antibodies, whereas at later times outgrowth becomes insensitive to anti-αV but remains sensitive to the anti-β1 family antiserum anti-ECMr, indicating that trophoblast cells modulate their interaction with Fn during outgrowth. Trophoblast outgrowth on vitronectin (Vn) is sensitive to anti-αV antibodies throughout the 5-day period examined.


Sign in / Sign up

Export Citation Format

Share Document