Faculty Opinions recommendation of Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans.

Author(s):  
Morris Maduro
2008 ◽  
Vol 314 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Zhongying Zhao ◽  
Thomas J. Boyle ◽  
Zhirong Bao ◽  
John I. Murray ◽  
Barbara Mericle ◽  
...  

Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 435-454 ◽  
Author(s):  
H Robert Horvitz ◽  
John E Sulston

ABSTRACT Twenty-four mutants that alter the normally invariant post-embryonic cell lineages of the nematode Caenorhabditis elegans have been isolated and genetically characterized. In some of these mutants, cell divisions fail that occur in wild-type animals; in other mutants, cells divide that do not normally do so. The mutants differ in the specificities of their defects, so that it is possible to identify mutations that affect some cell lineages but not others. These mutants define 14 complementation groups, which have been mapped. The abnormal phenotype of most of the cell-lineage mutants results from a single recessive mutation; however, the excessive cell divisions characteristic of one strain, CB1322, require the presence of two unlinked recessive mutations. All 24 cell-lineage mutants display incomplete penetrance and/or variable expressivity. Three of the mutants are suppressed by pleiotropic suppressors believed to be specific for null alleles, suggesting that their phenotypes result from the complete absence of gene activity.


Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 505-514 ◽  
Author(s):  
I.A. Hope

Promoter trapping has identified a gene, pes-1, which is expressed during C. elegans embryogenesis. The beta-galactosidase expression pattern, directed by the pes-1/lacZ fusion through which this gene was cloned, has been determined precisely in terms of the embryonic cell lineage and has three components. One component is in a subset of cells of the AB founder cell lineage during early embryogenesis, suggesting pes-1 may be regulated both by cell autonomous determinants and by intercellular signals. Analysis of cDNA suggests pes-1 has two sites for initiation of transcription and the two transcripts would encode related but distinct proteins. The predicted PES-1 proteins have homology to the fork head family of transcription factors and therefore may have important regulatory roles in early embryogenesis.


BioEssays ◽  
2014 ◽  
Vol 37 (3) ◽  
pp. 237-239 ◽  
Author(s):  
Beatriz Sáenz-Narciso ◽  
Eva Gómez-Orte ◽  
Angelina Zheleva ◽  
Rafael Torres-Pérez ◽  
Juan Cabello

1983 ◽  
Vol 100 (1) ◽  
pp. 64-119 ◽  
Author(s):  
J.E. Sulston ◽  
E. Schierenberg ◽  
J.G. White ◽  
J.N. Thomson

Genetics ◽  
1999 ◽  
Vol 151 (1) ◽  
pp. 131-141
Author(s):  
Laurent Molin ◽  
Heinke Schnabel ◽  
Titus Kaletta ◽  
Richard Feichtinger ◽  
Ian A Hope ◽  
...  

Abstract In the early Caenorhabditis elegans embryo five somatic founder cells are born during the first cleavages. The first of these founder cells, named AB, gives rise to 389 of the 558 nuclei present in the hatching larva. Very few genes directly involved in the specification of the AB lineage have been identified so far. Here we describe a screen of a large collection of maternal-effect embryonic lethal mutations for their effect on the early expression of a pes-1::lacZ fusion gene. This fusion gene is expressed in a characteristic pattern in 14 of the 32 AB descendants present shortly after the initiation of gastrulation. Of the 37 mutations in 36 genes suspected to be required specifically during development, 12 alter the expression of the pes-1::lacZ marker construct. The gene expression pattern alterations are of four types: reduction of expression, variable expression, ectopic expression in addition to the normal pattern, and reduction of the normal pattern together with ectopic expression. We estimate that ∼100 maternal functions are required to establish the pes-1 expression pattern in the early embryo.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


1989 ◽  
Vol 109 (3) ◽  
pp. 1185-1193 ◽  
Author(s):  
A A Hyman

In Caenorhabditis elegans embryos, early blastomeres of the P cell lineage divide successively on the same axis. This axis is a consequence of the specific rotational movement of the pair of centrosomes and nucleus (Hyman, A. A., and J. G. White. 1987. J. Cell Biol. 105:2123-2135). A laser has been used to perturb the centrosome movements that determine the pattern of early embryonic divisions. The results support a previously proposed model in which a centrosome rotates towards its correct position by shortening of connections, possibly microtubules, between a centrosome and a defined site on the cortex of the embryo.


Sign in / Sign up

Export Citation Format

Share Document