Faculty Opinions recommendation of A mathematical model to distinguish sociological and biological susceptibility factors in disease transmission in the context of H1N1/09 influenza.

Author(s):  
Vlastimil Krivan ◽  
Ludek Berec
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. B. Almeida ◽  
T. N. Vilches ◽  
C. P. Ferreira ◽  
C. M. C. B. Fortaleza

AbstractIn 2020, the world experienced its very first pandemic of the globalized era. A novel coronavirus, SARS-CoV-2, is the causative agent of severe pneumonia and has rapidly spread through many nations, crashing health systems and leading a large number of people to death. In Brazil, the emergence of local epidemics in major metropolitan areas has always been a concern. In a vast and heterogeneous country, with regional disparities and climate diversity, several factors can modulate the dynamics of COVID-19. What should be the scenario for inner Brazil, and what can we do to control infection transmission in each of these locations? Here, a mathematical model is proposed to simulate disease transmission among individuals in several scenarios, differing by abiotic factors, social-economic factors, and effectiveness of mitigation strategies. The disease control relies on keeping all individuals’ social distancing and detecting, followed by isolating, infected ones. The model reinforces social distancing as the most efficient method to control disease transmission. Moreover, it also shows that improving the detection and isolation of infected individuals can loosen this mitigation strategy. Finally, the effectiveness of control may be different across the country, and understanding it can help set up public health strategies.


2021 ◽  
Vol 2 (1) ◽  
pp. 13-19
Author(s):  
Ervin Mawo Banni ◽  
Maria A Kleden ◽  
Maria Lobo ◽  
Meksianis Zadrak Ndii

Malaria is transmitted via a bite of mosquitoes and it is dangerous if it is not properly treated. Mathematical modeling can be formulated to understand the disease transmission dynamics. In this paper, a mathematical model with an awareness program has been formulated and the reproduction number has been estimated against the data from Weeluri Health Center, Mamboro District, Central Sumba. The calculation showed that the reproduction number is R0 = 1.2562. Results showed that if the efficacy of the awareness program is lower than 20%, the reproduction number is still above unity. If the efficacy of the awareness program is higher than 20%, the reproduction number is lower than unity. This implies that the efficacy of awareness programs is the key to the success of Malaria eradication.


2020 ◽  
Vol 34 ◽  
pp. 02002
Author(s):  
Aurelia Florea ◽  
Cristian Lăzureanu

In this paper we consider a three-dimensional nonlinear system which models the dynamics of a population during an epidemic disease. The considered model is a SIS-type system in which a recovered individual automatically becomes a susceptible one. We take into account the births and deaths, and we also consider that susceptible individuals are divided into two groups: non-vaccinated and vaccinated. In addition, we assume a medical scenario in which vaccinated people take a special measure to quarantine their newborns. We study the stability of the considered system. Numerical simulations point out the behavior of the considered population.


Author(s):  
Liming Cai ◽  
Peixia Yue ◽  
Mini Ghosh ◽  
Xuezhi Li

Schistosomiasis is a snail-borne parasitic disease, which is affecting almost 240 million people worldwide. The number of humans affected by schistosomiasis is continuously increasing with the rise in the use of agrochemicals. In this paper, a mathematical model is formulated and analyzed to assess the effect of agrochemicals on the transmission of schistosomiasis. The proposed model incorporates the effects of fertilizers, herbicides and insecticides on susceptible snails and snail predators along with schistosomiasis disease transmission. The existence and stability of the equilibria in the model are discussed. Sensitivity analysis is performed to identify the key parameters of the proposed model, which contributes most in the transmission of this disease. Numerical simulations are also performed to assess the impact of fertilizers, herbicides and insecticides on schistosomiasis outbreaks. Our study reveals that the agricultural pollution can enhance the transmission intensity of schistosomiasis, and in order to prevent the outbreak of schistosomiasis, the use of pesticides should be controlled.


2020 ◽  
Author(s):  
Ibrahim M. ELmojtaba ◽  
Fatma Al-Musalhi ◽  
Asma Al-Ghassani ◽  
Nasser Al-Salti

Abstract A mathematical model with environmental transmission has been proposed and analyzed to investigate its role in the transmission dynamics of the ongoing COVID-19 outbreak. Two expressions for the basic reproduction number R0 have been analytically derived using the next generation matrix method. The two expressions composed of a combination of two terms related to human to human and environment to human transmissions. The value of R0 has been calculated using estimated parameters corresponding to two datasets. Sensitivity analysis of the reproduction number to the corresponding model parameters has been carried out. Existence and stability analysis of disease free and endemic equilibrium points have been presented in relation with the obtained expressions of R0. Numerical simulations to demonstrate the effect of some model parameters related to environmental transmission on the disease transmission dynamics have been carried out and the results have been demonstrated graphically.


2021 ◽  
Vol 2084 (1) ◽  
pp. 012022
Author(s):  
Hennie Husniah ◽  
Ruhanda ◽  
Asep Kuswandi Supriatna

Abstract In this paper we develop a mathematical model of disease transmission dynamics. Although some vaccines for some infectious diseases are available, there are some cases where handling new emerging infectious diseases, such as COVID-19 pandemic, is still a difficult problem to handle. Preventive actions, such as wearing masks, distance guarding, frequent hand washing, and others are still the most important interventions in handling the transmission of this disease. Recently, several countries have allowed the use of convalescent plasma transfusion (CPT) in the management of moderate and severe COVID-19 patients. Several early studies of this use have yielded prospective results with reduced mortality rates. A recent work also shows that using a simple discrete mathematical model of CPT could reduce the outbreak of disease transmission, in the sense of reducing the peak number of active cases and the length of the outbreak itself. In this paper, we use a continuous SIR model applied to COVID-19 pandemic data in Indonesia to address an important question whether convalescent plasma transfusion may reduce the transmission of the disease.


2020 ◽  
Author(s):  
Cory Simon

The classical Susceptible-Infectious-Recovered (SIR) mathematical model of the dynamics of infectious disease transmission resembles a dynamic model of a batch reactor carrying out an auto-catalytic reaction with catalyst deactivation.


2020 ◽  
Vol 202 ◽  
pp. 12008
Author(s):  
Dipo Aldila

A mathematical model for understanding the COVID-19 transmission mechanism proposed in this article considering two important factors: the path of transmission (direct-indirect) and human awareness. Mathematical model constructed using a four-dimensional ordinary differential equation. We find that the Covid-19 free state is locally asymptotically stable if the basic reproduction number is less than one, and unstable otherwise. Unique endemic states occur when the basic reproduction number is larger than one. From sensitivity analysis on the basic reproduction number, we find that the media campaign succeeds in suppressing the endemicity of COVID-19. Some numerical experiments conducted to show the dynamic of our model respect to the variation of parameters value.


2018 ◽  
Vol 12 (5) ◽  
pp. 205-217
Author(s):  
Jessica Marcela Montoya Aguilar ◽  
Jhoana P. Romero-Leiton ◽  
Eduardo Ibarguen-Mondragon

Sign in / Sign up

Export Citation Format

Share Document