Faculty Opinions recommendation of Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA.

Author(s):  
Tony Weil
2011 ◽  
Vol 40 (3) ◽  
pp. 996-1008 ◽  
Author(s):  
Gianpiero Spedale ◽  
Claartje A. Meddens ◽  
Maria J. E. Koster ◽  
Cheuk W. Ko ◽  
Sander R. van Hooff ◽  
...  

2018 ◽  
Vol 69 (2) ◽  
pp. 337-340
Author(s):  
Vlad Preluca ◽  
Bogdan Horatiu Serb ◽  
Sanda Marchian ◽  
Diter Atasie ◽  
Mihaela Cernusca Mitariu ◽  
...  

Heat shock inductors have potential as treatment for degenerative and protein misfolding diseases. Dimethyl-sulfoxide is widely used as a solvent in pharmacological screening tests and has been shown to have heat shock induction effects. Transgenic Tg (hsp70l:EGFP-HRAS_G12V)io3(AB) zebrafish larvae were exposed for 24 hours to dimethyl-sulfoxide in concentratios of 0.1-2%, and to moderate heat shock inductors pentoxifylline and tacrolimus. Positive controls were exposed to 35, 38 and 40�C for 20 min, and incubated for 24 h at 28�C. Heat shock response was measured by fluorescence microscopy and signal intensity quantification in FIJI. Dimethyl-sulfoxide caused a dose-dependant increase in fluorescent intensity, but significantly lower compared with exposure to 38 and 40�C. Pentoxifylline and tacrolimus induced a significantly higher increase in fluorescence compared with 0.5% dimethyl-sulfoxide. Thus, although dimethyl-sulfoxide has independent heat shock induction effects, concentrations of up to 0.5% are suitable for heat shock response screening tests.


2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


2019 ◽  
Author(s):  
Jiali Ye ◽  
Xuetong Yang ◽  
Sha Li ◽  
Wei Li ◽  
Qi Liu ◽  
...  

Abstract Background: Heat shock transcription factors (HSFs) play crucial roles in resisting heat stress and regulating plant development. Investigating the HSF family is essential for understanding the fertility conversion mechanism in thermo-sensitive male sterile wheat. Previous studies have investigated the HSF family in wheat but it is necessary to conduct more in-depth and systematic analyses based on the newly published reference genome. Results: In the present study, 61 wheat Hsf (TaHsf) genes were identified using two main strategies and renamed based on their physical locations on chromosomes. According to the gene structure and phylogenetic analyses, the 61 TaHsf genes were classified into three categories and eleven subclasses. The genes were unequally distributed on 21 chromosomes, including two pairs of tandem duplication genes and 52 TaHsf segmental duplication genes. According to the cis-elements identified, most of the TaHsfs can be activated by Ca++ and MYB, and they respond to drought, light, copper, and other stresses as well as heat shock. RNA-seq analysis indicated that the A2 class TaHsf genes exhibited persistently upregulated expression levels in the leaves/shoots, roots (except in the vegetative growth and reproductive growth stages), spikes, and grains in wheat under normal conditions. The A and B class TaHsf genes were positively regulated during the resistance to heat, whereas the C class genes were involved in drought regulation in wheat. Only the A and B class TaHsf genes were upregulated under fertile conditions in thermo-sensitive male sterile wheat. Conclusion: In this study, 61 wheat Hsf genes were identified based on the complete wheat reference genome. This comprehensive analysis provides novel insights into the TaHsf genes, including their diverse functions and involvement in metabolic pathways.


2002 ◽  
Vol 115 (10) ◽  
pp. 2011-2020 ◽  
Author(s):  
Korie E. Handwerger ◽  
Zheng'an Wu ◽  
Christine Murphy ◽  
Joseph G. Gall

Cajal bodies are evolutionarily conserved nuclear organelles that are believed to play a central role in assembly of RNA transcription and processing complexes. Although knowledge of Cajal body composition and behavior has greatly expanded in recent years, little is known about the molecules and mechanisms that lead to the formation of these organelles in the nucleus. The Xenopus oocyte nucleus or germinal vesicle is an excellent model system for the study of Cajal bodies, because it is easy to manipulate and it contains 50-100 Cajal bodies with diameters up to 10 μm. In this study we show that numerous mini-Cajal bodies (less than 2 μm in diameter) form in the germinal vesicle after oocytes recover from heat shock. The mechanism for heat shock induction of mini-Cajal bodies is independent of U7 snRNA and does not require transcription or import of newly translated proteins from the cytoplasm. We suggest that Cajal bodies originate by self-organization of preformed components, preferentially on the surface of B-snurposomes.


Sign in / Sign up

Export Citation Format

Share Document