Faculty Opinions recommendation of MUC1 protein expression in tumor cells regulates transcription of proinflammatory cytokines by forming a complex with nuclear factor-κB p65 and binding to cytokine promoters: importance of extracellular domain.

Author(s):  
Kermit Carraway
Planta Medica ◽  
2021 ◽  
Author(s):  
Mengqin Hong ◽  
Xingyu Fan ◽  
Shengxiang Liang ◽  
Wang Xiang ◽  
Liting Chen ◽  
...  

AbstractRheumatoid arthritis is a chronic autoimmune disease characterized by the infiltration of synovial inflammatory cells and progressive joint destruction. Total flavonoids of Bidens pilosa have been used against inflammation in rheumatoid arthritis, but its role in bone destruction remains to be explored. The aim of this paper was to study whether total flavonoids of B. pilosa relieve the severity of collagen-induced arthritis in rats, particularly whether it regulates the production of proinflammatory cytokines and the receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin signaling pathway. In this research, a collagen-induced disease model was induced in adult rats by subcutaneous injection of collagen II. Total flavonoids of B. pilosa at different doses (40, 80, and 160 mg/kg/d) were administered intragastrically, while methotrexate (1 mg/kg/w) was injected intraperitoneally as a positive control. Paw swelling, arthritis score, and body weight were assessed and evaluated. The severity of joint damage was determined using X-ray and confirmed by histopathology. The expression levels of receptor activator of nuclear factor-κB ligand, osteoprotegerin, IL-1β, IL-17, and TNF in the serum and tissue were assayed using ELISA and immunohistochemistry. We found that total flavonoids of B. pilosa attenuated collagen-induced arthritis at the macroscopic level, and total flavonoids of B. pilosa-treated rats showed reduced paw swelling, arthritis scores, and X-ray appearance of collagen-induced arthritis in addition to improved histopathological results. These findings were consistent with reduced serum and tissue receptor activator of nuclear factor-κB ligand, TNF, IL-1β, and IL-17 levels but increased osteoprotegerin levels. Our data suggest that total flavonoids of B. pilosa attenuate collagen-induced arthritis by suppressing the receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB/osteoprotegerin pathway and the subsequent production of proinflammatory cytokines. In addition, total flavonoids of B. pilosa may be a promising therapeutic candidate for the management of rheumatoid arthritis.


2001 ◽  
Vol 27 (4) ◽  
pp. 751-756 ◽  
Author(s):  
Thomas Dschietzig ◽  
Christoph Richter ◽  
Gert Pfannenschmidt ◽  
Cornelia Bartsch ◽  
Michael Laule ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A307-A308 ◽  
Author(s):  
Kenta Yoshiura ◽  
Tadahito Shimada ◽  
Takahiro Mitsuhashi ◽  
Kumi Takahashi ◽  
Hideyuki Hiraishi ◽  
...  

2006 ◽  
Vol 188 (2) ◽  
pp. 321-331 ◽  
Author(s):  
T Taguchi ◽  
T Takao ◽  
Y Iwasaki ◽  
M Nishiyama ◽  
K Asaba ◽  
...  

Dehydroepiandrosterone (DHEA) is believed to have an anti-tumor effect, as well as anti-inflammatory, antioxidant, and anti-aging effects. To clarify the possible inhibitory action of DHEA on pituitary tumor cells, we tested the effects of DHEA, alone or in combination with the nuclear factor-κB (NF-κB) inhibitor parthenolide (PRT), on AtT20 corticotroph cell growth and function both in vitro and in vivo. We found that, in vitro, DHEA and PRT had potent inhibitory effects on pro-opiomelanocortin and NF-κB-dependent gene expression. They also suppressed the transcription activity of survivin, a representative anti-apoptotic factor, and induced apoptosis in this cell line. Furthermore, using BALB/C nude mice with xenografts of AtT20 cells in vivo, we found that the combined administration of DHEA and PRT significantly attenuated tumor growth and survivin expression. The treatment also decreased the elevated plasma corticosterone levels and ameliorated the malnutrition induced by tumor growth. Altogether, these results suggested that combined treatments of DHEA and PRT potently inhibit the growth and function of corticotroph tumor cells both in vitro and in vivo. This effect may, at least partly, be caused by the suppressive effects of these compounds, such as survivin and other inhibitor of apoptosis proteins, on NF-κB-mediated gene transcription.


Sign in / Sign up

Export Citation Format

Share Document