scholarly journals Suppressive effects of dehydroepiandrosterone and the nuclear factor-κB inhibitor parthenolide on corticotroph tumor cell growth and function in vitro and in vivo

2006 ◽  
Vol 188 (2) ◽  
pp. 321-331 ◽  
Author(s):  
T Taguchi ◽  
T Takao ◽  
Y Iwasaki ◽  
M Nishiyama ◽  
K Asaba ◽  
...  

Dehydroepiandrosterone (DHEA) is believed to have an anti-tumor effect, as well as anti-inflammatory, antioxidant, and anti-aging effects. To clarify the possible inhibitory action of DHEA on pituitary tumor cells, we tested the effects of DHEA, alone or in combination with the nuclear factor-κB (NF-κB) inhibitor parthenolide (PRT), on AtT20 corticotroph cell growth and function both in vitro and in vivo. We found that, in vitro, DHEA and PRT had potent inhibitory effects on pro-opiomelanocortin and NF-κB-dependent gene expression. They also suppressed the transcription activity of survivin, a representative anti-apoptotic factor, and induced apoptosis in this cell line. Furthermore, using BALB/C nude mice with xenografts of AtT20 cells in vivo, we found that the combined administration of DHEA and PRT significantly attenuated tumor growth and survivin expression. The treatment also decreased the elevated plasma corticosterone levels and ameliorated the malnutrition induced by tumor growth. Altogether, these results suggested that combined treatments of DHEA and PRT potently inhibit the growth and function of corticotroph tumor cells both in vitro and in vivo. This effect may, at least partly, be caused by the suppressive effects of these compounds, such as survivin and other inhibitor of apoptosis proteins, on NF-κB-mediated gene transcription.

2005 ◽  
Vol 19 (12) ◽  
pp. 3085-3096 ◽  
Author(s):  
Manory A. Fernando ◽  
Anthony P. Heaney

Abstract Pituitary tumors are common and cause considerable morbidity due to local invasion and altered hormone secretion. Doxazosin (dox), a selective α1-adrenergic receptor antagonist, used to treat hypertension, also inhibits prostate cancer cell proliferation. We examined the effects of dox on murine and human pituitary tumor cell proliferation in vitro and in vivo. dox treatment inhibited proliferation of murine pituitary tumor cells, induced G0-G1 cell cycle arrest, and reduced phosphorylated retinoblastoma levels. In addition, increased annexin-fluorescein isothiocyanate immunoreactivity and cleaved caspase-3 levels, in keeping with dox-mediated apoptosis, were observed in the human and murine pituitary tumor cells, and dox administration to mice, harboring corticotroph tumors, decreased tumor growth and reduced plasma ACTH levels. dox-mediated antiproliferative and proapoptotic actions were not confined to α-adrenergic receptor-expressing pituitary tumor cells and were unaffected by cotreatment with the α-adrenergic receptor blocker, phenoxybenzamine. dox treatment led to reduced phosphorylated inhibitory κB (IκB)-α expression, and nuclear factor-κB transcription and decreased basal and TNFα-induced proopiomelanocortin transcriptional activation. These results demonstrate that the selective α1-adrenergic receptor antagonist dox inhibits pituitary tumor cell growth in vitro and in vivo by mechanisms that are in part independent of its α-adrenergic receptor-blocking actions and involve down-regulation of nuclear factor-κB signaling. dox is proposed as a possible novel medical therapy for pituitary tumors.


2017 ◽  
Vol 14 (2) ◽  
pp. 1477-1483 ◽  
Author(s):  
Jinwu Chen ◽  
Xiaojie Li ◽  
Dengjiao Ma ◽  
Tao Liu ◽  
Pingping Tian ◽  
...  

2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2006 ◽  
Vol 69 (6) ◽  
pp. 2027-2036 ◽  
Author(s):  
Tamás Letoha ◽  
Erzsébet Kusz ◽  
Gábor Pápai ◽  
Annamária Szabolcs ◽  
József Kaszaki ◽  
...  

2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


Author(s):  
Patrycja Guzik ◽  
Klaudia Siwowska ◽  
Hsin-Yu Fang ◽  
Susan Cohrs ◽  
Peter Bernhardt ◽  
...  

Abstract Purpose It was previously demonstrated that radiation effects can enhance the therapy outcome of immune checkpoint inhibitors. In this study, a syngeneic breast tumor mouse model was used to investigate the effect of [177Lu]Lu-DOTA-folate as an immune stimulus to enhance anti-CTLA-4 immunotherapy. Methods In vitro and in vivo studies were performed to characterize NF9006 breast tumor cells with regard to folate receptor (FR) expression and the possibility of tumor targeting using [177Lu]Lu-DOTA-folate. A preclinical therapy study was performed over 70 days with NF9006 tumor-bearing mice that received vehicle only (group A); [177Lu]Lu-DOTA-folate (5 MBq; 3.5 Gy absorbed tumor dose; group B); anti-CTLA-4 antibody (3 × 200 μg; group C), or both agents (group D). The mice were monitored regarding tumor growth over time and signs indicating adverse events of the treatment. Results [177Lu]Lu-DOTA-folate bound specifically to NF9006 tumor cells and tissue in vitro and accumulated in NF9006 tumors in vivo. The treatment with [177Lu]Lu-DOTA-folate or an anti-CTLA-4 antibody had only a minor effect on NF9006 tumor growth and did not substantially increase the median survival time of mice (23 day and 19 days, respectively) as compared with untreated controls (12 days). [177Lu]Lu-DOTA-folate sensitized, however, the tumors to anti-CTLA-4 immunotherapy, which became obvious by reduced tumor growth and, hence, a significantly improved median survival time of mice (> 70 days). No obvious signs of adverse effects were observed in treated mice as compared with untreated controls. Conclusion Application of [177Lu]Lu-DOTA-folate had a positive effect on the therapy outcome of anti-CTLA-4 immunotherapy. The results of this study may open new perspectives for future clinical translation of folate radioconjugates.


2021 ◽  
Author(s):  
zhengtuan guo ◽  
qiang yv ◽  
chunlin miao ◽  
wenan ge ◽  
peng li

Wilms tumor is the most common type of renal tumor in children. MicroRNAs (miRNA) are small non-coding RNAs that play crucial regulatory roles in tumorigenesis. We aimed to study the expression profile and function of miR-27a-5p in Wilms tumor. MiR-27a-5p expression was downregulated in human Wilms tumor tissues. Functionally, overexpression of miR-27a-5p promoted cell apoptosis of Wilms tumor cells. Furthermore, upregulated miR-27a-5p delayed xenograft Wilms tumor tumorigenesis in vivo. Bioinformatics analysis predicted miR-27-5p directly targeted to the 3’-untranslated region (UTR) of PBOV1 and luciferase reporter assay confirmed the interaction between miR-27a-5p and PBOV1. The function of PBOV1 in Wilms tumor was evaluated in vitro and knockdown of PBOV1 dampened cell migration. In addition, overexpression of PBOV1 antagonized the tumor-suppressive effect of miR-27a-5p in Wilms tumor cells. Collectively, our findings reveal the regulatory axis of miR-27-5p/PBOV1 in Wilms tumor and miR-27a-5p might serve as a novel therapeutic target in Wilms tumor.


Sign in / Sign up

Export Citation Format

Share Document