Faculty Opinions recommendation of Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins.

Author(s):  
Philippe Saas ◽  
Sylvain Perruche
2015 ◽  
Vol 17 (5) ◽  
pp. 702-706 ◽  
Author(s):  
Y. Eriguchi ◽  
K. Nakamura ◽  
D. Hashimoto ◽  
S. Shimoda ◽  
N. Shimono ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Yoshihiro Eriguchi ◽  
Shuichiro Takashima ◽  
Hideyo Oka ◽  
Sonoko Shimoji ◽  
Kiminori Nakamura ◽  
...  

AbstractAllogeneic hematopoietic stem cell transplantation (SCT) is a curative therapy for various hematologic disorders. Graft-versus-host disease (GVHD) and infections are the major complications of SCT, and their close relationship has been suggested. In this study, we evaluated a link between 2 complications in mouse models. The intestinal microbial communities are actively regulated by Paneth cells through their secretion of antimicrobial peptides, α-defensins. We discovered that Paneth cells are targeted by GVHD, resulting in marked reduction in the expression of α-defensins, which selectively kill noncommensals, while preserving commensals. Molecular profiling of intestinal microbial communities showed loss of physiologic diversity among the microflora and the overwhelming expansion of otherwise rare bacteria Escherichia coli, which caused septicemia. These changes occurred only in mice with GVHD, independently on conditioning-induced intestinal injury, and there was a significant correlation between alteration in the intestinal microbiota and GVHD severity. Oral administration of polymyxin B inhibited outgrowth of E coli and ameliorated GVHD. These results reveal the novel mechanism responsible for shift in the gut flora from commensals toward the widespread prevalence of pathogens and the previously unrecognized association between GVHD and infection after allogeneic SCT.


Blood ◽  
2013 ◽  
Vol 122 (8) ◽  
pp. 1505-1509 ◽  
Author(s):  
John E. Levine ◽  
Elisabeth Huber ◽  
Suntrea T. G. Hammer ◽  
Andrew C. Harris ◽  
Joel K. Greenson ◽  
...  

Key Points Paneth cell numbers in the duodenum at onset of GVHD correlate with outcomes. Paneth cells are easy to identify and quantify with light microscopy and may supplement histopathological grading of GI GVHD.


2017 ◽  
Vol 214 (12) ◽  
pp. 3507-3518 ◽  
Author(s):  
Eiko Hayase ◽  
Daigo Hashimoto ◽  
Kiminori Nakamura ◽  
Clara Noizat ◽  
Reiki Ogasawara ◽  
...  

The intestinal microbial ecosystem is actively regulated by Paneth cell–derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host–microbiota cross talk toward therapeutic benefits.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3349-3349
Author(s):  
Rena Feinman ◽  
Iriana Colorado ◽  
Keyi Wang ◽  
Eugenia Dziopa ◽  
Michael A Flynn ◽  
...  

Abstract The etiology of graft-versus-host disease (GVHD) is rooted in the alloreactive response of donor T cells present in the hematopoietic graft resulting in the destruction of the patient's tissues, particularly the gastrointestinal tract. Gut GVHD affects up to 50% of patients, is a leading cause of death, and has overlapping features with inflammatory bowel disease (IBD). Increased gut permeability, alterations of the gut microbiome and intestinal stem cell niche damage predispose the gut to the local and systemic effects of GVHD, and is exacerbated by the inability of the gut to adequately regenerate. Severe shifts in metabolism and reduced oxygen (O2) availability in the inflamed gut are major underlying factors in the pathogenesis of IBD. Two related transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, originally discovered as master regulators of the adaptive response to hypoxia, have been recently shown to be gut protective and promote mucosal healing in response to injury. Using a MHC mismatched B10.BR→B6 bone marrow transplant (BMT) model, we previously found that loss of intestinal epithelial (IE) HIF-1α or HIF-2α worsened survival compared to wild-type mice and exhibited increased GVHD-induced-histopathology. Thus, we hypothesized that HIF-1 and HIF-2 protects and repairs the gut from conditioning and GVHD-related damage. HIF-1 and HIF-2 are heterodimers consisting of an O2-labile HIF-1α or HIF-2α subunit respectively and a constitutively expressed HIF-1β subunit. The recent discovery that iron-dependent prolyl hydroxylase enzymes (PHD1-3) can trigger the O2-dependent proteasomal degradation of the HIF-1α subunit has led to the development of pan-PHD inhibitors (PHDi) that activate HIF-1 and HIF-2. PHDi such as dimethyloxallyl glycine (DMOG) and AKB-4924 have been shown to attenuate colitis and radiation-induced gut toxicity in animal models. We thus sought to determine whether PHDi could also ameliorate gut GVHD in the B10.BR→B6 BMT model. B6 mice were lethally irradiated (10Gy, split dose) and transplanted with 5x106 T-cell depleted bone marrow (BM) cells from B10.BR donors with 2x106 enriched T cells from spleens and lymph nodes (BM+T). B6 mice transplanted with only T cell depleted BM cells served as our non-GVHD control group. B6 mice were treated with AKB-4924 (AKB, 5 mg/kg) or vehicle (β-cyclodextrin) via intraperitoneal delivery, beginning 1 day prior to BMT and for 6 consecutive days post-BMT. Treatment with AKB prevented significant weight loss, compared to vehicle-treated mice, 7 days post-BMT (n=6, p<.002). Histopathologic assessment of the jejunum of AKB treated mice after 7 days revealed fewer apoptotic cells and an increased number of Paneth and goblet cells compared to vehicle-treated mice. Immunohistochemical staining for lysozyme showed that AKB prevented GVHD-induced Paneth cell ablation compared to their vehicle BMT counterpart (2.8 Lyz+ cells/crypt vs 0.84 Lyz+ cells/crypt, n=3, p<.003). Additionally, we evaluated the effects of AKB on T cell alloreactivity. In mixed lymphocyte reaction Elispot assays, AKB and DMOG, reduced the alloreactive interferon (IFN)-γ response in B10.BR anti-B6 (p<0.001) and MHC matched, minor antigen-mismatched B6 anti-BALB.B cultures (p<0.05). Furthermore, AKB reduced the number of gut-infiltrating CD3+ T cells compared to vehicle-treated BMT mice (39 vs 155.1 CD3+ cells/high-power field, n=3, p<.0003). Our results provide the framework to validate the therapeutic potential of PHDi as an intestinal regenerative strategy in mitigating GVHD. Disclosures Peters: Aerpio Therapeutics: Employment, Equity Ownership.


Blood ◽  
2020 ◽  
Vol 136 (12) ◽  
pp. 1442-1455 ◽  
Author(s):  
Johana Norona ◽  
Petya Apostolova ◽  
Dominik Schmidt ◽  
Rebekka Ihlemann ◽  
Nadine Reischmann ◽  
...  

Abstract Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2–based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.


1999 ◽  
Vol 189 (8) ◽  
pp. 1329-1342 ◽  
Author(s):  
Gaël Dulude ◽  
Denis-Claude Roy ◽  
Claude Perreault

The aim of this work was to decipher how graft-versus-host disease (GVHD) affects T cell production and homeostasis. In GVHD+ mice, thymic output was decreased fourfold relative to normal mice, but was sufficient to maintain a T cell repertoire with normal diversity in terms of Vβ usage. Lymphoid hypoplasia in GVHD+ mice was caused mainly by a lessened expansion of the peripheral postthymic T cell compartment. In 5-bromo-2′-deoxyuridine pulse-chase experiments, resident T cells in the spleen of GVHD+ mice showed a normal turnover rate (proliferation and half-life). When transferred into thymectomized GVHD− secondary hosts, T cells from GVHD+ mice expanded normally. In contrast, normal T cells failed to expand when injected into GVHD+ mice. Thus, the reduced size of the postthymic compartment in GVHD+ mice was not due to an intrinsic lymphocyte defect, but to an extrinsic microenvironment abnormality. We suggest that this extrinsic anomaly is consistent with a reduced number of functional peripheral T cell niches. Therefore, our results show that GVHD-associated T cell hypoplasia is largely caused by a perturbed homeostasis of the peripheral compartment. Furthermore, they suggest that damage to the microenvironment of secondary lymphoid organs may represent an heretofore unrecognized cause of acquired T cell hypoplasia.


Sign in / Sign up

Export Citation Format

Share Document