Faculty Opinions recommendation of A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals.

Author(s):  
Bradley Olson
1991 ◽  
Vol 115 (5) ◽  
pp. 1267-1274 ◽  
Author(s):  
S Eliott ◽  
P H Vardy ◽  
K L Williams

While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug. A subpopulation of peripheral and anterior cells label brightly with antimyosin II antibodies, and many of these cells display a polarized intracellular distribution of myosin II. Other cells in the slug label less brightly and their cytoplasm displays a more homogeneous distribution of myosin II. These results provide insight into cell motility within a three-dimensional tissue and they are discussed in relation to the possible roles of myosin II in multicellular development.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170484 ◽  
Author(s):  
Matthew D. B. Jackson ◽  
Salva Duran-Nebreda ◽  
George W. Bassel

Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure–function relationships that can guide future organ design.


2009 ◽  
Vol 335 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Muthugapatti K. Kandasamy ◽  
Elizabeth C. McKinney ◽  
Roger B. Deal ◽  
Aaron P. Smith ◽  
Richard B. Meagher

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Karen Baker ◽  
Irene A Gyamfi ◽  
Gregory I Mashanov ◽  
Justin E Molloy ◽  
Michael A Geeves ◽  
...  

Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Marco La Fortezza ◽  
Gregory J. Velicer

Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners—a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. e1007141 ◽  
Author(s):  
Miriam Kolog Gulko ◽  
Gabriele Heinrich ◽  
Carina Gross ◽  
Blagovesta Popova ◽  
Oliver Valerius ◽  
...  

1995 ◽  
Vol 108 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
E. Shelden ◽  
D.A. Knecht

We have used fluorescent labeling, confocal microscopy and computer-assisted motion analysis to observe and quantify individual wild-type and myosin II mutant cell behavior during early multicellular development in Dictyostelium discoideum. When cultured with an excess of unlabeled wild-type cells, labeled control cells are randomly distributed within aggregation streams, while myosin II mutant cells are found primarily at the lateral edges of streams. Wild-type cells move at average rates of 8.5 +/- 4.9 microns/min within aggregation streams and can exhibit regular periodic movement at 3.5 minute intervals; half as long as the 7 minute period reported previously for isolated cells. Myosin II mutants under the same conditions move at 5.0 +/- 4.8 microns/min, twice as fast as reported previously for isolated myosin II mutant cells, and fail to display regular periodic movement. When removed from aggregation streams myosin II mutant cells move at only 2.5 +/- 2.0 microns/min, while wild-type cells under these conditions move at 5.9 +/- 4.5 microns/min. Analysis of cell morphology further reveals that myosin II mutant cells are grossly and dynamically deformed within wild-type aggregation streams but not when removed from streams and examined in isolation. These data reveal that the loss of myosin II has dramatic consequences for cells undergoing multicellular development. The segregation of mutant cells to aggregation stream edges demonstrates that myosin II mutants are unable to penetrate a multicellular mass of wild-type cells, while the observed distortion of myosin II mutant cells suggests that the cortex of such cells is too flacid to resist forces generated during movement. The increased rate of mutant cell movement and distortion of mutant cell morphology seen within wild-type aggregation streams further argues both that movement of wild-type cells within a multicellular mass can generate traction forces on neighboring cells and that mutant cell morphology and behavior can be altered by these forces. In addition, the distortion of myosin II mutant cells within wild-type aggregation streams indicates that myosin is not required for the formation of cell-cell contacts. Finally, the consequences of the loss of myosin II for cells during multicellular development are much more severe than has been previously revealed for isolated cells. The techniques used here to analyze the behavior of individual cells within multicellular aggregates provide a more sensitive assay of mutant cell phenotype than has been previously available and will be generally applicable to the study of motility and cytoskeletal mutants in Dictyostelium.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 135-146 ◽  
Author(s):  
S.K. Mann ◽  
R.A. Firtel

We and others have previously shown that cAMP-dependent protein kinase (PKA) activity is essential for aggregation, induction of prespore gene expression and multicellular development in Dictyostelium. In this manuscript, we further examine this regulatory role. We have overexpressed the Dictyostelium PKA catalytic subunit (PKAcat) in specific cell types during the multicellular stages, using prestalk and prespore cell-type-specific promoters to make PKA activity constitutive in these cells (independent of cAMP concentration). To examine the effects on cell-type differentiation, we cotransformed the PKAcat-expressing vectors with reporter constructs expressing lacZ from four cell-type-specific promoters: ecmA (specific for prestalk A cells); ecmB (specific for prestalk B and anterior-like cells in the slug); ecmB delta 89 (specific for stalk cells); and SP60 (prespore-cell-specific). By staining for beta-galactosidase expression histologically at various stages of development in individual strains, we were able to dissect the morphological changes in these strains, examine the spatial localization of the individual cell types, and understand the possible roles of PKA during multicellular development. Expression of PKAcat from either the ecmA or ecmB prestalk promoters resulted in abnormal development that arrested shortly after the mound stage, producing a mound with a round apical protrusion at the time of tip formation. Prestalk A and prestalk B cells were localized in the central region and the apical mound in the terminal differentiated aggregate, while prespore cells showed an aberrant spatial localization. Consistent with a developmental arrest, these mounds did not form either mature spores or stalk cells and very few cells expressed a stalk-cell-specific marker. Expression of PKAcat from the prespore promoter resulted in abnormal morphogenesis and accelerated spore cell differentiation. When cells were plated on agar, a fruiting body was formed with a very large basal region, containing predominantly spores, and a small, abnormal sorocarp. Mature spore cells were first detected by 14 hours, with maximal levels reached by 18–20 hours, in contrast to 24–26 hours in wild-type strains. When cells were plated on filters, they produced an elongated tip from a large basal region, which continued to elongate as a tubular structure and produce a ‘slug-like’ structure at the end. The slug was composed predominantly of prestalk cells with a few prespore cells restricted to the junction between the ‘slug’ and tube. As the slug migrated, these prespore cells were found in the tube, while new prespore cells appeared at the slug/tube junction, suggesting a continual differentiation of new prespore cells at the slug's posterior.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document