Faculty Opinions recommendation of The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis.

Author(s):  
Padmini Salgame ◽  
Archana Gopalakrishnan
2020 ◽  
Vol 205 (1) ◽  
pp. 153-167 ◽  
Author(s):  
Caitlyn T. Hoffpauir ◽  
Samantha L. Bell ◽  
Kelsi O. West ◽  
Tao Jing ◽  
Allison R. Wagner ◽  
...  

2020 ◽  
Vol 218 (2) ◽  
Author(s):  
Li Zhang ◽  
Xiuju Jiang ◽  
Daniel Pfau ◽  
Yan Ling ◽  
Carl F. Nathan

Macrophages help defend the host against Mycobacterium tuberculosis (Mtb), the major cause of tuberculosis (TB). Once phagocytized, Mtb resists killing by macrophages, replicates inside them, and leads to their death, releasing Mtb that can infect other cells. We found that the death of Mtb-infected mouse macrophages in vitro does not appear to proceed by a currently known pathway. Through genome-wide CRISPR-Cas9 screening, we identified a critical role for autocrine or paracrine signaling by macrophage-derived type I IFNs in the death of Mtb-infected macrophages in vitro, and blockade of type I IFN signaling augmented the effect of rifampin, a first-line TB drug, in Mtb-infected mice. Further definition of the pathway of type I IFN–mediated macrophage death may allow for host-directed therapy of TB that is more selective than systemic blockade of type I IFN signaling.


Author(s):  
Fanli Yi ◽  
Jing Hu ◽  
Xiaoyan Zhu ◽  
Yue Wang ◽  
Qiuju Yu ◽  
...  

Proline-glutamic acid (PE)- and proline-proline-glutamic acid (PPE)-containing proteins are exclusive to Mycobacterium tuberculosis (MTB), the leading cause of tuberculosis (TB). In this study, we performed global transcriptome sequencing (RNA-Seq) on PPE57-stimulated peripheral blood mononuclear cells (PBMCs) and control samples to quantitatively measure the expression level of key transcripts of interest. A total of 1367 differentially expressed genes (DEGs) were observed in response to a 6 h exposure to PPE57, with 685 being up-regulated and 682 down-regulated. Immune-related gene functions and pathways associated with these genes were evaluated, revealing that the type I IFN signaling pathway was the most significantly enriched pathway in our RNA-seq dataset, with 14 DEGs identified therein including ISG15, MX2, IRF9, IFIT3, IFIT2, OAS3, IFIT1, IFI6, OAS2, OASL, RSAD2, OAS1, IRF7, and MX1. These PPE57-related transcriptomic profiles have implications for a better understanding of host global immune mechanisms underlying MTB infection outcomes. However, more studies regarding these DEGs and type I IFN signaling in this infectious context are necessary to more fully clarify the underlying mechanisms that arise in response to PPE57 during MTB infection.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Yifan Sun ◽  
Wei Zhang ◽  
Chunsheng Dong ◽  
Sidong Xiong

ABSTRACT Type I interferon (IFN) plays an important role in Mycobacterium tuberculosis persistence and disease pathogenesis. M. tuberculosis has evolved a number of mechanisms to evade host immune surveillance. However, it is unclear how the type I IFN response is tightly regulated by the M. tuberculosis determinants. Stimulator of interferon genes (STING) is an essential adaptor for type I IFN production triggered by M. tuberculosis genomic DNA or cyclic dinucleotides upon infection. To investigate how the type I IFN response is regulated by M. tuberculosis determinants, immunoprecipitation-mass spectrometry-based (IP-MS) proteomic analysis was performed to screen proteins interacting with STING in the context of M. tuberculosis infection. Among the many predicted candidates interacting with STING, the M. tuberculosis coding protein Rv0753c (MmsA) was identified. We confirmed that MmsA binds and colocalizes with STING, and the N-terminal regions of MmsA (amino acids [aa] 1 to 251) and STING (aa 1 TO 190) are responsible for MmsA-STING interaction. Type I IFN production was impaired with exogenous expression of MmsA in RAW264.7 cells. MmsA inhibited the STING-TBK1-IRF3 pathway, as evidenced by reduced STING levelS and subsequent IRF3 activation. Furthermore, MmsA facilitated p62-mediated STING autophagic degradation by binding p62 with its C terminus (aa 252 to 455), which may account for the negative regulation of M. tuberculosis MmsA in STING-mediated type I IFN production. Additionally, the M. tuberculosis mmsA R138W mutation, detected in a hypervirulent clinical isolate, enhanced the degradation of STING, implying the important relevance of MmsA in disease outcome. Together, we report a novel mechanism where M. tuberculosis MmsA serves as an antagonist of type I IFN response by targeting STING with p62-mediated autophagic degradation. IMPORTANCE It is unclear how the type I IFN response is regulated by mycobacterial determinants. Here, we characterized the previously unreported role of M. tuberculosis MmsA in immunological regulation of type I IFN response by targeting the central adaptor STING in the DNA sensing pathway. We identified STING-interacting MmsA by coimmunoprecipitation-mass spectrometry-based (IP-MS) proteomic analysis and showed MmsA interacting with STING and autophagy receptor p62 via its N terminus and C terminus, respectively. We also showed that MmsA downregulated type I IFN by promoting p62-mediated STING degradation. Moreover, the MmsA mutant R138W is potentially associated with the virulence of M. tuberculosis clinical strains owing to the modulation of STING protein. Our results provide novel insights into the regulatory mechanism of type I IFN response manipulated by mycobacterial MmsA and the additional cross talk between autophagy and STING in M. tuberculosis infection, wherein a protein from microbial pathogens induces autophagic degradation of host innate immune molecules.


2007 ◽  
Vol 178 (5) ◽  
pp. 3143-3152 ◽  
Author(s):  
Sarah A. Stanley ◽  
James E. Johndrow ◽  
Paolo Manzanillo ◽  
Jeffery S. Cox

2011 ◽  
Vol 187 (5) ◽  
pp. 2540-2547 ◽  
Author(s):  
Aleksey Novikov ◽  
Marco Cardone ◽  
Robert Thompson ◽  
Kevin Shenderov ◽  
Kevin D. Kirschman ◽  
...  

2018 ◽  
Author(s):  
Daisy X. Ji ◽  
Katherine J. Chen ◽  
Naofumi Mukaida ◽  
Igor Kramnik ◽  
K. Heran Darwin ◽  
...  

AbstractThe bacterium Mycobacterium tuberculosis (Mtb) causes tuberculosis (TB) and is responsible for more human mortality than any other single pathogen1. Although ~1.7 billion people are infected with Mtb2, most infections are asymptomatic. Progression to active disease occurs in ~10% of infected individuals and is predicted by an elevated type I interferon (IFN) response3–8. Type I IFNs are vital for antiviral immunity, but whether or how they mediate susceptibility to Mtb has been difficult to study, in part because the standard C57BL/6 (B6) mouse model does not recapitulate the IFN-driven disease that appears to occur in humans3–5,8. Here we examined B6. Sst1S congenic mice that carry the C3H “sensitive” allele of the Sst1 locus that renders them highly susceptible to Mtb infections9,10. We found that B6.Sst1S mice exhibit markedly increased type I IFN signaling, and that type I IFNs were required for the enhanced susceptibility of B6. Sst1S mice to Mtb. Type I IFNs affect the expression of hundreds of genes, several of which have previously been implicated in susceptibility to bacterial infections11,12. Nevertheless, we found that heterozygous deficiency in just a single IFN target gene, IL-1 receptor antagonist (IL-1Ra), is sufficient to reverse IFN-driven susceptibility to Mtb. As even a partial reduction in IL-1Ra levels led to significant protection, we hypothesized that IL-1Ra may be a plausible target for host-directed anti-TB therapy. Indeed, antibody-mediated neutralization of IL-1Ra provided therapeutic benefit to Mtb-infected B6. Sst1S mice. Our results illustrate how the diversity of inbred mouse strains can be exploited to better model human TB, and demonstrate that IL-1Ra is an important mediator of type I IFN-driven susceptibility to Mtb infections in vivo.


Sign in / Sign up

Export Citation Format

Share Document