Faculty Opinions recommendation of Prolonged controlled mechanical ventilation in humans triggers myofibrillar contractile dysfunction and myofilament protein loss in the diaphragm.

Author(s):  
Nicola Latronico
Thorax ◽  
2016 ◽  
Vol 71 (5) ◽  
pp. 436-445 ◽  
Author(s):  
Sabah N A Hussain ◽  
Anabelle S Cornachione ◽  
Céline Guichon ◽  
Auday Al Khunaizi ◽  
Felipe de Souza Leite ◽  
...  

2019 ◽  
Vol 131 (3) ◽  
pp. 605-618 ◽  
Author(s):  
Nikolay Moroz ◽  
Karen Maes ◽  
Jean-Philippe Leduc-Gaudet ◽  
Peter Goldberg ◽  
Basil J. Petrof ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Diaphragm dysfunction and atrophy develop during prolonged controlled mechanical ventilation. Fiber atrophy has been attributed to activation of the proteasome and autophagy proteolytic pathways. Oxidative stress activates the proteasome during controlled mechanical ventilation, but it is unclear whether it also activates autophagy. This study investigated whether pretreatment with the antioxidant N-acetylcysteine affects controlled mechanical ventilation–induced diaphragm contractile dysfunction, fiber atrophy, and proteasomal and autophagic pathway activation. The study also explored whether proteolytic pathway activity during controlled mechanical ventilation is mediated by microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes. Methods Three groups of adult male rats were studied (n = 10 per group). The animals in the first group were anesthetized and allowed to spontaneously breathe. Animals in the second group were pretreated with saline before undergoing controlled mechanical ventilation for 24 h. The animals in the third group were pretreated with N-acetylcysteine (150 mg/kg) before undergoing controlled mechanical ventilation for 24 h. Diaphragm contractility and activation of the proteasome and autophagy pathways were measured. Expressions of microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes were measured with quantitative polymerase chain reaction. Results Controlled mechanical ventilation decreased diaphragm twitch force from 428 ± 104 g/cm2 (mean ± SD) to 313 ± 50 g/cm2 and tetanic force from 2,491 ± 411 g/cm2 to 1,618 ± 177 g/cm2. Controlled mechanical ventilation also decreased diaphragm fiber size, increased expression of several autophagy genes, and augmented Atrogin-1, MuRF1, and Nedd4 expressions by 36-, 41-, and 8-fold, respectively. Controlled mechanical ventilation decreased the expressions of six microRNAs (miR-20a, miR-106b, miR-376, miR-101a, miR-204, and miR-93) that regulate autophagy genes. Pretreatment with N-acetylcysteine prevented diaphragm contractile dysfunction, attenuated protein ubiquitination, and downregulated E3 ligase and autophagy gene expression. It also reversed controlled mechanical ventilation–induced microRNA expression decreases. N-Acetylcysteine pretreatment had no affect on fiber atrophy. Conclusions Prolonged controlled mechanical ventilation activates the proteasome and autophagy pathways in the diaphragm through oxidative stress. Pathway activation is accomplished, in part, through inhibition of microRNAs that negatively regulate autophagy-related genes.


2002 ◽  
Vol 92 (5) ◽  
pp. 1851-1858 ◽  
Author(s):  
Scott K. Powers ◽  
R. Andrew Shanely ◽  
Jeff S. Coombes ◽  
Thomas J. Koesterer ◽  
Michael McKenzie ◽  
...  

These experiments tested the hypothesis that a relatively short duration of controlled mechanical ventilation (MV) will impair diaphragmatic maximal specific force generation (specific Po) and that this force deficit will be exacerbated with increased time on the ventilator. To test this postulate, adult Sprague-Dawley rats were randomly divided into one of six experimental groups: 1) control ( n = 12); 2) 12 h of MV ( n = 4); 3) 18 h of MV ( n = 4); 4) 18 h of anesthesia and spontaneous breathing ( n = 4); 5) 24 h of MV ( n = 7); and 6) 24 h of anesthesia and spontaneous breathing ( n = 4). MV animals were anesthetized, tracheostomized, and ventilated with room air. Animals in the control group were acutely anesthetized but were not exposed to MV. Animals in two spontaneous breathing groups were anesthetized and breathed spontaneously for either 18 or 24 h. No differences ( P > 0.05) existed in diaphragmatic specific Po between control and the two spontaneous breathing groups. In contrast, compared with control, all durations of MV resulted in a reduction ( P < 0.05) in diaphragmatic specific tension at stimulation frequencies ranging from 15 to 160 Hz. Furthermore, the MV-induced decrease in diaphragmatic specific Po was time dependent, with specific Po being ∼18 and ∼46% lower ( P < 0.05) in animals mechanically ventilated for 12 and 24 h, respectively. These data support the hypothesis that relatively short-term MV impairs diaphragmatic contractile function and that the magnitude of MV-induced force deficit increases with time on the ventilator.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruining Liu ◽  
Gang Li ◽  
Haoli Ma ◽  
Xianlong Zhou ◽  
Pengcheng Wang ◽  
...  

Abstract Background Ventilator-induced diaphragmatic dysfunction (VIDD) is associated with weaning difficulties, intensive care unit hospitalization (ICU), infant mortality, and poor long-term clinical outcomes. The expression patterns of long noncoding RNAs (lncRNAs) and mRNAs in the diaphragm in a rat controlled mechanical ventilation (CMV) model, however, remain to be investigated. Results The diaphragms of five male Wistar rats in a CMV group and five control Wistar rats were used to explore lncRNA and mRNA expression profiles by RNA-sequencing (RNA-seq). Muscle force measurements and immunofluorescence (IF) staining were used to verify the successful establishment of the CMV model. A total of 906 differentially expressed (DE) lncRNAs and 2,139 DE mRNAs were found in the CMV group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the biological functions or pathways of these DE mRNAs. Our results revealed that these DE mRNAs were related mainly related to complement and coagulation cascades, the PPAR signaling pathway, cholesterol metabolism, cytokine-cytokine receptor interaction, and the AMPK signaling pathway. Some DE lncRNAs and DE mRNAs determined by RNA-seq were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-sEq. Co-expression network analysis indicated that three selected muscle atrophy-related mRNAs (Myog, Trim63, and Fbxo32) were coexpressed with relatively newly discovered DE lncRNAs. Conclusions This study provides a novel perspective on the molecular mechanism of DE lncRNAs and mRNAs in a CMV model, and indicates that the inflammatory signaling pathway and lipid metabolism may play important roles in the pathophysiological mechanism and progression of VIDD.


1993 ◽  
Vol 21 (8) ◽  
pp. 1143-1148 ◽  
Author(s):  
JAVIER MUÑOZ ◽  
JOSE EUGENIO GUERRERO ◽  
JOSE LUIS ESCALANTE ◽  
RICARDO PALOMINO ◽  
BRAULIO DE LA CALLE

Author(s):  
W. Dick ◽  
I. Schutz

Controlled mechanical ventilation using positive and expiratory pressure (PEEP) is a well-established therapeutic measure in intensive care. Its early application has been shown to markedly decrease morbidity and mortality, especially in polytraumatized patients with an acute respiratory distresss syndrome. It therefore seems reasonable to use positive end expiratory pressure as early as possible in the clinical treatment of emergency patients before extensive pulmonary changes have had time to develop completely.


Sign in / Sign up

Export Citation Format

Share Document