Faculty Opinions recommendation of Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis.

Author(s):  
Peter Heeringa
2019 ◽  
Vol 41 (4) ◽  
pp. 580-584
Author(s):  
Ney Arencibia Pérez ◽  
María Luisa Agüera Morales ◽  
Rafael Sánchez Sánchez ◽  
Rosa María Ortega Salas ◽  
Rafael Ángel Fernández de la Puebla ◽  
...  

Abstract In kidney biopsies reviews, scleroderma renal crisis (SRC) is characterized by vascular endothelial injuries, C4d deposits on peritubular vessels, and acute and chronic injuries coexisting on the same biopsy. The clinical signs of thrombotic microangiopathy (TMA) are described in systemic sclerosis (SSc), nevertheless, it has not been related to acute injuries described on kidney biopsies. We report a case of SRC in a patient with scleroderma-dermatomyositis overlap syndrome, which also showed clinical and histopathological data of TMA. On fundus examination, a severe acute hypertensive retinopathy was found. The kidney biopsy showed severe endothelial damage with widening of mucoid cells at the level of the intima, focal concentric proliferation on most small arterioles, and C3, C4d, and IgM deposits along the capillary walls. The genetic study of complement only showed the presence of membrane cofactor protein (MCP) risk haplotypes, without other genetic complement disorders. We understand that in a patient with TMA and SSc, the kidney damage would be fundamentally endothelial and of an acute type; moreover, we would observe clear evidence of complement activation. Once further studies correlate clinical-analytical data with anatomopathological studies, it is likely that we will be forced to redefine the SRC concept, focusing on the relationship between acute endothelial damage and complement activation.


2019 ◽  
Vol 119 (09) ◽  
pp. 1433-1440 ◽  
Author(s):  
Eleni Gavriilaki ◽  
Akrivi Chrysanthopoulou ◽  
Ioanna Sakellari ◽  
Ioannis Batsis ◽  
Despina Mallouri ◽  
...  

AbstractTransplant-associated thrombotic microangiopathy (TA-TMA) is a severe and life-threatening complication of hematopoietic cell transplantation (HCT) that often coincides with graft-versus-host-disease (GVHD). Although endothelial damage seems to be the common denominator for both disorders, the role of complement system, neutrophils, and coagulation has not been clarified. In an effort to distinguish the pathogenesis of TA-TMA from GVHD, we evaluated markers of complement activation, neutrophil extracellular trap (NET) release, endothelial damage, and activation of coagulation cascade in the circulation of patients with these two disorders, as well as control HCT recipients without TA-TMA or GVHD. We observed that the terminal complement product C5b-9 levels, the levels of markers of NET formation, and thrombin–antithrombin complex levels were significantly increased in the TA-TMA group compared with patients without complications, whereas there was no significant difference between the GVHD and the control group. On the other hand, the levels of circulating thrombomodulin, an endothelial damage marker, were significantly increased in both TA-TMA and GVHD patients. These findings propose a role for the interplay between complement system, neutrophil activation through NET release, and activation of the coagulation cascade in TA-TMA.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 777-777
Author(s):  
Daria V Madeeva ◽  
Kelly Borges ◽  
Marcus Shallow ◽  
Prerak V Juthani ◽  
Stephen Y Wang ◽  
...  

Abstract BACKGROUND. COVID-19 is a prothrombotic disease, characterized by endotheliopathy, hypercoagulability, and thromboembolic complications. We hypothesized that the pathogenesis of thromboembolism associated with COVID-19 might differ from thromboembolism in patients without COVID-19. In this study, we sought to evaluate the proteomic signatures of plasma from patients with venous thromboembolism with and without COVID-19. METHODS. Between December 17, 2020 and February 25, 2021 blood was collected from 48 hospitalized patients. Of these 24 had a confirmed diagnosis of COVID-19 infection (COVID+) and radiologic confirmation of arterial or venous thromboembolism (TE+); 17 had COVID-19 infection with absence of arterial thrombosis clinically and absence of venous thromboembolism on lower extremity Doppler ultrasound or chest CT angiography (COVID+/TE-), while 7 were arterial or venous thromboembolism in the absence of COVID-19 (COVID-/TE+). Blood was collected in sodium citrate tubes and centrifuged at 4000 rpm for 20 minutes, with resulting plasma supernatant used for protein profiling performed at Eve Technologies (Calgary, Alberta, Canada). Institutional Review Board approval was obtained for this study. Statistical analysis was performed using GraphPad Prism (v9.1, GraphPad Software, San Diego, CA) and R (v4, R Core Team). P values <0.05 were considered statistically significant. A heatmap was generated using Heatmapper (heatmapper.ca) to represent the concentrations of proteins. RESULTS. The median age was 63 years; overall 25 (52%) were men (13 [54%] among COVID+/TE+, 11 [65%] among COVID+/TE-, and 1 [14%] among COVID-/TE+). In COVID-19 patients who developed thromboembolic events, several proteins associated with inflammation, complement activation, and hemostasis were present at higher levels than in non-COVID-19 patients who developed thromboembolic events (Fig. 1). These included complement factors C2 and C5a, pentraxin-3 (PTX-3), lipocalin-2 (LCN2), resistin (RETN), platelet endothelial cell adhesion molecule-1 (Pecam1), serum amyloid A (SAA), and tissue factor (TF). The heatmap indicates relative protein levels detected in each subject (columns) for proteins (rows) that had statistically significant differences between groups (Fig. 2). Heatmap revealed relatively lower levels of all proteins in patients with thromboembolism without COVID-19 and relatively higher levels of proteins in patients with COVID-19, and especially in ICU patients with COVID-19 and thromboembolism. CONCLUSIONS. Thromboembolic complications in patients with COVID-19 are associated with increased levels of various proteins involved in complement activation and immunothrombotic cascades, compared to thrombotic events in the absence of COVID-19. Activation of the classical complement pathway as evidenced by a relative increase in complement factor C2 may lead to increased TF activation, reflecting more substantial endothelial damage in COVID-19 patients. Higher levels of Pecam1, SAA, LCN2, and RETN all point to increased endotheliopathy, inflammation, and tissue damage in COVID-19 compared to non-COVID-19 thrombosis. These findings may offer insights into novel therapeutic strategies to treat immunothrombotic complications of COVID-19. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (23) ◽  
pp. 6051-6063 ◽  
Author(s):  
Caroline Diorio ◽  
Kevin O. McNerney ◽  
Michele Lambert ◽  
Michele Paessler ◽  
Elizabeth M. Anderson ◽  
...  

Abstract Most children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have mild or minimal disease, with a small proportion developing severe disease or multisystem inflammatory syndrome in children (MIS-C). Complement-mediated thrombotic microangiopathy (TMA) has been associated with SARS-CoV-2 infection in adults but has not been studied in the pediatric population. We hypothesized that complement activation plays an important role in SARS-CoV-2 infection in children and sought to understand if TMA was present in these patients. We enrolled 50 hospitalized pediatric patients with acute SARS-CoV-2 infection (n = 21, minimal coronavirus disease 2019 [COVID-19]; n = 11, severe COVID-19) or MIS-C (n = 18). As a biomarker of complement activation and TMA, soluble C5b9 (sC5b9, normal 247 ng/mL) was measured in plasma, and elevations were found in patients with minimal disease (median, 392 ng/mL; interquartile range [IQR], 244-622 ng/mL), severe disease (median, 646 ng/mL; IQR, 203-728 ng/mL), and MIS-C (median, 630 ng/mL; IQR, 359-932 ng/mL) compared with 26 healthy control subjects (median, 57 ng/mL; IQR, 9-163 ng/mL; P < .001). Higher sC5b9 levels were associated with higher serum creatinine (P = .01) but not age. Of the 19 patients for whom complete clinical criteria were available, 17 (89%) met criteria for TMA. A high proportion of tested children with SARS-CoV-2 infection had evidence of complement activation and met clinical and diagnostic criteria for TMA. Future studies are needed to determine if hospitalized children with SARS-CoV-2 should be screened for TMA, if TMA-directed management is helpful, and if there are any short- or long-term clinical consequences of complement activation and endothelial damage in children with COVID-19 or MIS-C.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-32
Author(s):  
Ana Belen Moreno-Castaño ◽  
Sara Fernandez ◽  
Marta Palomo ◽  
Patricia Molina ◽  
Julia Martinez-Sanchez ◽  
...  

Background: Clinical and analytical data on patients suffering from coronavirus disease-2019 (COVID-19) indicate that endothelial damage plays a key role in the pathophysiology of the disease and is responsible for the pulmonary complications and the thrombotic microangiopathy affecting multiple organs, which contribute directly to mortality (Ackerman et al. N Engl J Med 2020). Detection of biomarkers of endothelial injury in circulating blood may provide critical diagnostic and prognostic information on the disease course (Goshua et al. Lancet Haematology 2020). Endothelial injury is also a cornerstone of pathobiology in other septic and potentially life-threatening inflammatory syndromes. Objectives: To identify circulating markers of endothelial damage in COVID-19 patients, and compare their levels with those observed in other septic syndromes. Methods: Plasma samples from non-critically ill patients with confirmed COVID-19 pneumonia (positive nasopharyngeal swab and confirmatory radiological chest imaging) requiring admission (n=42) were collected during the first 36h of hospitalization. Endothelial damage was evaluated by measuring in plasma: i) markers of endothelial function and activation (sVCAM-1, VWF, ADAMTS-13 activity, Protein C and α2-antiplasmin as a marker of fibrinolysis); ii) heparan sulfate (HS) levels, as indicators of endothelial glycocalyx degradation and loss of endothelial barrier function; and iii) C5b9 deposits on endothelial cells in culture, and soluble C5b9 (sC5b9) levels, to measure complement activation. Circulating dsDNA was analyzed as an indicator of the presence of neutrophil extracellular traps (NETs). ELISA tests were used for sVCAM-1, Protein C, HS, and sC5b9 levels. ADAMTS-13 activity was evaluated by FRETS. VWF, Protein C, and α2-antiplasmin were measured at the Atellica COAG 360 (Siemens Healthineers). C5b9 deposits were assessed by immunofluorescence and dsDNA levels by Quant-iT PicoGreen assay kit. Results were compared with those obtained in healthy donors (controls, n=45), and patients with non-infectious systemic inflammatory response syndrome (NI-SIRS, n=8) and septic shock (SS, n=8). Results: Levels of sVCAM-1 were significantly higher in COVID-19 patients vs. controls, NI-SIRS and SS (159±12 vs. 79±4, 57±8 and 80±10 ng/mL, respectively, p<0.005) (Mean±SDM). VWF was elevated in COVID-19 patients vs. controls (240±26 vs. 96±5%, p<0.001), with similar values in NI-SIRS (271±40%), and significantly reduced vs. SS (476±43%, p<0.001). HS levels in COVID-19 patients were twice those detected in controls (1669±174 vs. 839±36 ng/mL, p=0.001), but they did not differ from those in NI-SIRS (1372±368 ng/mL), and were significantly lower than in SS (3677±880 ng/mL, p<0.001 vs COVID-19). Regarding complement activation, deposits of C5b9 on endothelial cells were significantly increased vs. controls (2-fold, p<0.01), with no notable differences vs. NI-SIRS (3±1-fold) and significantly lower than in SS (8±2-fold, p<0.001). Remarkably, sC5b9 levels were much more elevated in COVID-19 patients (1064±120 vs. 204±11 ng/mL, p<0.001), and no significant differences were observed vs. NI-SIRS (902±160 ng/mL) or SS (958±180 ng/mL). Also of note, presence of NETs was significantly elevated in the plasma of COVID-19 patients vs. controls (16±1.3 vs. 2±0.3 ng/ml, p<0.001), but similar to NI-SIRS (19±5 ng/mL) and clearly inferior to SS (33±6 ng/mL, p<0.001) (Figure). Importantly and in contrast, ADAMTS-13 activity, Protein C, and α2-antiplasmin values were within the normal range in COVID-19 patients. Conclusions: Our data clearly demonstrate the presence of endothelial stress products in the circulating blood of non-critically ill COVID-19 patients. These biomarkers of endothelial injury are suggestive indicators of different aspects of the disease: specifically, release of acute phase reactants, degradation of the endothelial cell glycocalyx, and activation of the complement system. Furthermore, this profile of biomarkers in COVID-19 appears specific, with a differential behavior in comparison with septic shock, in which endothelial damage is also known to be critical. Additional studies are needed to validate these biomarkers as diagnostic and prognostic tools of the endothelial complications in COVID-19 patients, both in early disease and later, as well as supporting specific forms of therapeutic intervention. Figure Disclosures Carreras: Jazz Pharmaceuticals: Research Funding, Speakers Bureau; German Jose´ Carreras Leukaemia Foundation: Research Funding. Carlo-Stella:Boehringer Ingelheim and Sanofi: Consultancy; ADC Therapeutics and Rhizen Pharmaceuticals: Research Funding; Bristol-Myers Squibb, Merck Sharp & Dohme, Janssen Oncology, AstraZeneca: Honoraria; Servier, Novartis, Genenta Science srl, ADC Therapeutics, F. Hoffmann-La Roche, Karyopharm, Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Moraleda:Sandoz: Consultancy, Other: Travel Expenses; Novartis: Consultancy, Other: Travel Expenses; Gilead: Consultancy, Other: Travel Expenses; Jazz Pharmaceuticals: Consultancy, Research Funding; Takeda: Consultancy, Other: Travel Expenses. Richardson:Celgene/BMS, Oncopeptides, Takeda, Karyopharm: Research Funding. Diaz-Ricart:German Jose Carreras Leukaemia Foundation: Research Funding; Jazz Pharmaceuticals: Honoraria, Research Funding.


1981 ◽  
Author(s):  
N J Dodd ◽  
D Vergani ◽  
J H Turney ◽  
L Bevis ◽  
M J Weston

It has been proposed that hypoxia occurring during Haemodialysis (HD) is related to complement activation by the dialysis membrane. Consequent leucocyte aggregation may then lead to pulmonary micro-embolisation. We set out to assess complement activation during HD using a new, sensitive, assay for activation fragment C3d.Twenty patients, established on long term HD had blood samples taken prior to, and after 60 and 120 minutes on dialysis. C3 and C4 were measured by conventional nephelometric assays,and C3d by a new nephelometric assay. We also measured C1q binding activity (C1qBA).Hypoxia was maximal at 60 minutes (73.9% of pre-dialysis value). Pre-dialysis C3d levels were elevated,and rose significantly on HD at 60 and 120 minutes. C3 levels were persistently low-normal. C4 levels were normal and showed no change during HD. CIqBA increased during HD representing either liberation of pre-formed immune complexes(IC), or de-novo formation of IC, perhaps related to heparinisation.C3d levels are a more sensitive indicator of complement activation than conventional complement component assays. (Previous studies have failed to demonstrate C3 or C4 depletion during HD). It is possible that HD induced complement activation may occur via the classical pathway, as a result of immune complex activity, or (more likely in view of normal C4 levels) via the alternative pathway, as a result of blood contact with the cuprophane membrane.In addition to hypoxia, complement activation and C1qBA may lead to other recognised complications of regular HD including 1. Endothelial damage, 2. Hypersplenism and 3. Thrombocytopenia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Caroline Diorio ◽  
Kevin O McNerney ◽  
Michele P. Lambert ◽  
Michele Paessler ◽  
Julie Chase ◽  
...  

Introduction: During the Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2), 3 distinct phenotypes have emerged in children. The majority of children have mild or no symptoms. Similar to adults, a minority of children can be severely affected with respiratory distress requiring intensive care. Finally, they may develop a phenomenon presumed unique to children termed Multisystem Inflammatory Syndrome in Children (MIS-C). MIS-C is a hyperinflammatory syndrome characterized by fever and organ dysfunction (particularly cardiac) in the setting of recent COVID-19 infection. Reports from the adult literature have invoked thrombotic microangiopathy (TMA) and complement activation as a potential cause for severe manifestations of COVID-19 (Zhang et al. NEJM. 2020; Campbell et al. Circulation 2020). Soluble C5b9 (sC5b-9), the terminal complement complex, has been implicated as a marker of hematopoietic stem cell transplant associated TMA (HSCT-TMA; Jodele et al. Blood 2014). We sought to elucidate the role of terminal complement activation and TMA in the different pediatric disease phenotypes. Methods: We enrolled children admitted to the Children's Hospital of Philadelphia during the COVID-19 pandemic who had evidence of SARS-CoV-2 infection on reverse transcriptase polymerase chain reaction (RT-PCR) from mucosa, or met clinical criteria for MIS-C. Patients (pts) were classified in to 3 categories: minimal COVID-19 symptoms or incidental finding of SARS-CoV-2 infection, severe COVID-19 requiring ventilatory support, or MIS-C. To investigate the role of TMA in children with COVID-19 we measured sC5b-9 in plasma of pts with the 3 manifestations of SARS-CoV-2, and in healthy controls. sC5b9 was measured in triplicate at two dilutions by ELISA. Proinflammatory cytokines were measured using V-Plex Pro-inflammatory Panel 1 Human Kits and analyzed on a QuickPlex SQ120. P-values were computed using Dunn's multiple comparisons test after Kruskal-Wallis testing. Blood smears were examined by a hematologist and hematopathologist for schistocytes. Results: 50 pts were enrolled on whom complete sC5b9 data were available: minimal COVID-19 (N=18), severe COVID-19 (N=11), and MIS-C (N=21). Plasma was obtained on healthy controls (N=26). The median sC5b9 level in healthy controls (57 ng/mL) differed significantly (p<0.001 in each case; Figure 1A) from that in pts with minimal disease (392 ng/mL), severe disease (646 ng/mL), and MIS-C (630 ng/mL); differences between MIS-C, minimal, and severe were not statistically significant. Elevations in sC5b9 correlated in a statistically significant manner with the maximum creatinine and blood urea nitrogen (BUN) measured during hospitalization (Figure 1B&C), but not age (p=0.512). sC5b9 did not correlate with lactate dehydrogenase (LDH), nor with the lowest levels of fibrinogen, hemoglobin or platelet counts. Of pts with available data, 19/26 (73.1%) had elevated LDH, 2/31 (6.4%) had hypofibrinogenemia, 35/47 (74.5%) were anemic, and 28/47 (59.6%) were thrombocytopenic. Pro-inflammatory cytokines were measured. Of particular interest to TMA is the neutrophil chemotactic factor IL-8, because of its role as a marker of endothelial damage (Dvorak et al. Front Pediatr 2019). Levels of IL-8 differed significantly between pts with MIS-C (p=0.0166) or pts with severe COVID-19 (p=0.0079), when compared to minimal COVID-19 pts; but not between pts with MIS-C and severe disease (p = 0.99). Blood smears were available on 34 patients. Schistocytes were present in 13/15 (87%) patients with MIS-C, 7/8 (87%) patients with severe COVID-19 and 5/11 (45%) patients with minimal COVID-19 (χ2=6.59, p=0.037). Conclusions: We demonstrate derangements of the final common pathway of complement activation in children with the 3 presentations of SARS-CoV-2. Strikingly, sC5b9s were abnormal even in children with minimal disease or incidental infection. Renal dysfunction correlated with elevations in sC5b9, strengthening the evidence that TMA plays a role in the pathophysiology of SARS-CoV-2 infection. Future work is aimed at further characterizing the role of the complement cascade in the pathogenesis of MIS-C and COVID-19 in children. The long-term complications of endothelial damage and complement activation are unknown and extended follow-up is warranted. Figure 1 Disclosures Diorio: Children's Hospital of Philadelphia: Research Funding; University of Pennsylvania: Research Funding. Lambert:22qSociety: Consultancy; RDMD ITP study: Consultancy; Octapharma: Consultancy, Research Funding; Educational Concepts in Medicine: Consultancy; Shionogi: Consultancy; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Argenix: Consultancy; CdLS Foundation: Consultancy; Sysmex: Research Funding; Dova: Consultancy, Membership on an entity's Board of Directors or advisory committees; Principia: Consultancy, Membership on an entity's Board of Directors or advisory committees; ClinGen: Honoraria; Platelet Disorder Support Association (PDSA): Consultancy; AstraZeneca: Research Funding; Bayer: Consultancy; ITP Australia: Consultancy. Henrickson:Horizon Pharma: Other: ad hoc board meeting. Odom John:Burroughs Wellcome: Research Funding; NIAID: Research Funding. Bassiri:CSL Behring: Other: Spouse receives stocks . Behrens:NIH/NIAID: Research Funding. Teachey:Janssen: Consultancy; Amgen: Consultancy; La Roche: Consultancy; Sobi: Consultancy.


Blood ◽  
2015 ◽  
Vol 125 (21) ◽  
pp. 3253-3262 ◽  
Author(s):  
Roxanne Cofiell ◽  
Anjli Kukreja ◽  
Krystin Bedard ◽  
Yan Yan ◽  
Angela P. Mickle ◽  
...  

Key PointsThis exploratory study describes the effect of eculizumab on multiple physiologic pathways affected by complement dysregulation in aHUS. The results highlight the importance of sustained terminal complement blockade, even in patients with improved clinical laboratory values.


Sign in / Sign up

Export Citation Format

Share Document