Faculty Opinions recommendation of Intron retention induced by microsatellite expansions as a disease biomarker.

Author(s):  
Matthew Disney
Author(s):  
Agnieszka A. Golicz ◽  
Annapurna D. Allu ◽  
Wei Li ◽  
Neeta Lohani ◽  
Mohan B. Singh ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


FEBS Journal ◽  
2021 ◽  
Author(s):  
Lynn. Williams ◽  
Thomas Layton ◽  
Nan Yang ◽  
Marc Feldmann ◽  
Jagdeep Nanchahal

Author(s):  
Weirong Wei ◽  
Yinyan Tang ◽  
Huimin He ◽  
Subash C.B. Gopinath ◽  
Lingling Wang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evi Goulielmaki ◽  
Maria Tsekrekou ◽  
Nikos Batsiotos ◽  
Mariana Ascensão-Ferreira ◽  
Eleftheria Ledaki ◽  
...  

AbstractRNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders.


2017 ◽  
Vol 57 (2) ◽  
pp. 387-393 ◽  
Author(s):  
Victor Bloniecki ◽  
Dag Aarsland ◽  
Kaj Blennow ◽  
Jeffrey Cummings ◽  
Farshad Falahati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document