Faculty Opinions recommendation of Cell size controlled in plants using DNA content as an internal scale.

Author(s):  
Adrienne Roeder ◽  
Frances Kerin Clark
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Fujiwara ◽  
K Deguchi ◽  
Y Naka ◽  
M Sasaki ◽  
T Nishimoto ◽  
...  

Abstract Introduction Tissue engineering using human induced pluripotent stem cells-derived cardiomyocytes (hiPSCs-CMs) is one of the potential tools to replicate human heart in vitro. Although there are many publications on 3 dimensional (3D) heart tissues (1), these tissues show fetal like phenotypes. For that reason, several maturation methods such as electrical stimulation and mechanical stress have been investigated (2, 3). However, these methods have been inadequate in differentiating fetal like phenotype tissue from adult tissues. Previously, we identified a novel compound, T112, which induced hiPSCs-CMs maturation from approximately 9,000 compounds using Troponin I1-EmGFP and Troponin I3-mCherry double reporter hiPSCs-CMs. This compound enhanced morphological and metabolic maturation of hiPSCs-CMs via estrogen-rerated receptor gamma activation Purpose We hypothesized that our novel compound, T112, in combination with mechanical stress could result in further maturation of 3D heart tissue. Therefore, our specific aim is to develop a novel maturation method applicable to genetic disease model of HCM using 3D heart tissue combined with T112. Methods We constructed 3D heart tissue mixed with fibroblast and double reporter hiPSCs-CMs by the hydrogel methods using Flex cell system®. We added T112 with or without mechanical stretching to 3D tissue from 7 to 15 days after 3D heart tissue was constructed. Then we measured maturation related phenotype such as sarcomere gene expression, mitochondrial DNA content and cell size. Results Similar to hiPSCs-CM, the addition of T112 to the constructed 3D heart tissue significantly increased TNNI3 mRNA compared to that of DMSO. Furthermore, T112 treated 3D heart tissue showed increased cell size and oblong shape. Next, in order to promote more maturation of 3D heart tissue, we performed mechanical stretching with the addition of T112. The combination of T112 with mechanical stretching showed higher expression of mCherry, a reporter protein for TNNI3 expression, and higher isotropy of sarcomere alignment in 3D heart tissue than that with the static condition. Furthermore, 3D heart tissue in the treatment of T112 with or without mechanical stretching showed higher mitochondrial DNA content compared to the respective DMSO controls. Interestingly, we applied this combination method to hiPSCs carrying MYH7 R719Q mutation which is known to cause hypertrophic cardiomyopathy, and the 3D heart tissue composed of cardiomyocytes derived from mutant iPSCs demonstrated increased sarcomere disarray compared to isogenic wild-type 3D heart tissue. Conclusion These results suggest that the combination of T112 and mechanical stretching promotes metabolic and structural maturation of 3D heart tissue and would be useful for creating a HCM disease model. Funding Acknowledgement Type of funding source: Private company. Main funding source(s): T-CiRA project, Takeda Pharmaceutical Company Limited


1989 ◽  
Vol 21 (6) ◽  
pp. 789-793 ◽  
Author(s):  
L BAKKEN ◽  
R OLSEN
Keyword(s):  

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Katsuya Fuchino ◽  
Helena Chan ◽  
Ling Chin Hwang ◽  
Per Bruheim

ABSTRACT The alphaproteobacterium Zymomonas mobilis exhibits extreme ethanologenic physiology, making this species a promising biofuel producer. Numerous studies have investigated its biology relevant to industrial applications and mostly at the population level. However, the organization of single cells in this industrially important polyploid species has been largely uncharacterized. In the present study, we characterized basic cellular behavior of Z. mobilis strain Zm6 under anaerobic conditions at the single-cell level. We observed that growing Z. mobilis cells often divided at a nonmidcell position, which contributed to variant cell size at birth. However, the cell size variance was regulated by a modulation of cell cycle span, mediated by a correlation of bacterial tubulin homologue FtsZ ring accumulation with cell growth. The Z. mobilis culture also exhibited heterogeneous cellular DNA content among individual cells, which might have been caused by asynchronous replication of chromosome that was not coordinated with cell growth. Furthermore, slightly angled divisions might have resulted in temporary curvatures of attached Z. mobilis cells. Overall, the present study uncovers a novel bacterial cell organization in Z. mobilis. IMPORTANCE With increasing environmental concerns about the use of fossil fuels, development of a sustainable biofuel production platform has been attracting significant public attention. Ethanologenic Z. mobilis species are endowed with an efficient ethanol fermentation capacity that surpasses, in several respects, that of baker’s yeast (Saccharomyces cerevisiae), the most-used microorganism for ethanol production. For development of a Z. mobilis culture-based biorefinery, an investigation of its uncharacterized cell biology is important, because bacterial cellular organization and metabolism are closely associated with each other in a single cell compartment. In addition, the current work demonstrates that the polyploid bacterium Z. mobilis exhibits a distinctive mode of bacterial cell organization, likely reflecting its unique metabolism that does not prioritize incorporation of nutrients for cell growth. Thus, another significant result of this work is to advance our general understanding in the diversity of bacterial cell architecture.


1983 ◽  
Vol 49 (3) ◽  
pp. 411-417 ◽  
Author(s):  
Katherine A. Smalley ◽  
Quinton R. Rogers ◽  
James G. Morris

1. The effects of feeding either high-protein (HP) or low-protein (LP) diets between 1.8 and 15 kg live weight (LW) and a low-energy (LE) or high-energy (HE) intake subsequently on the cellularity of muscle and adipose tissue in pigs growing to 75 kg LW were investigated.2. The effects of the nutritional treatments on muscle tissue were assessed from the weight and DNA content of the m. adductor. For adipose tissue the total DNA content and fat cell size of the subcutaneous adipose tissue contained in the left shoulder joint were determined.3. Feeding the LP diets in early life reduced the weight and DNA content of the m. adductor (P < 0.01) and increased fat cell size (P < 0.01) at 15 kg LW.4. Subsequent to 15 kg there was an almost linear increase in muscle DNA with increasing LW, and the difference between pigs from the initial protein treatments progressively diminished and was no longer apparent at 60 kg LW.5. At 30 kg LW, pigs given the LP diets before 15 kg LW contained less DNA in the subcutaneous adipose tissue from the shoulder joint (P < 0.01) and had larger fat cells (P < 0.05) than pigs given the HP diets initially. However, adipose DNA and fat cell size increased with increasing LW and the differences resulting from the initial protein treatments progressively diminished. On the LE and HE treatments subsequent to 15 kg these differences were no longer evident at 45 and 60 kg respectively.6. Pigs given the HE intake subsequent to 15 kg, contained less DNA in muscle tissue (P < 0·05) at 60 and 75 kg LW and had larger fat cells (P < 0·05) at 45, 60 and 75 kg LW, than pigs on the LE treatment.


1987 ◽  
Vol 104 (3) ◽  
pp. 739-748 ◽  
Author(s):  
L J Goff ◽  
A W Coleman

Cells with polyploid nuclei are generally larger than cells of the same organism or species with nonpolyploid nuclei. However, no such change of cell size with ploidy level is observed in those red algae which alternate isomorphic haploid with diploid generations. The results of this investigation reveal the explanation. Nuclear DNA content and other parameters were measured in cells of the filamentous red alga Griffithsia pacifica. Nuclei of the diploid generation contain twice the DNA content of those of the haploid generation. However, all cells except newly formed reproductive cells are multinucleate. The nuclei are arranged in a nearly perfect hexagonal array just beneath the cell surface. When homologous cells of the two generations are compared, although the cell size is nearly identical, each nucleus of the diploid cell is surrounded by a region of cytoplasm (a "domain") nearly twice that surrounding a haploid nucleus. Cytoplasmic domains associated with a diploid nucleus contain twice the number of plastids, and consequently twice the amount of plastid DNA, than is associated with the domain of a haploid nucleus. Thus, doubling of ploidy is reflected in doubling of the size and organelle content of the domain associated with each nucleus. However, cell size does not differ between homologous cells of the two generations, because total nuclear DNA (sum of the DNA in all nuclei in a cell) per cell does not differ. This is the solution to the cytological paradox of isomorphy.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52916 ◽  
Author(s):  
Susan C. Sharpe ◽  
Julie A. Koester ◽  
Martina Loebl ◽  
Amanda M. Cockshutt ◽  
Douglas A. Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document