Faculty Opinions recommendation of Regulation of Integrin β 1 recycling to lipid rafts by Rab1a to promote cell migration.

Author(s):  
Jonathan Bogan
2010 ◽  
Vol 285 (38) ◽  
pp. 29398-29405 ◽  
Author(s):  
Chenran Wang ◽  
Youngdong Yoo ◽  
Huaping Fan ◽  
Eunjung Kim ◽  
Kun-Liang Guan ◽  
...  

2019 ◽  
Vol 30 (12) ◽  
pp. 1437-1450 ◽  
Author(s):  
Divyesh Joshi ◽  
Maneesha S. Inamdar

Blood vessel formation requires endothelial cell (EC) migration that depends on dynamic remodeling of the cytoskeleton. Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein essential for EC migration and sprouting angiogenesis during mouse development and is implicated in metastatic disease. Here, we report that Rudhira mediates cytoskeleton organization and dynamics during EC migration. Rudhira binds to both microtubules (MTs) and vimentin intermediate filaments (IFs) and stabilizes MTs. Rudhira depletion impairs cytoskeletal cross-talk, MT stability, and hence focal adhesion disassembly. The BCAS3 domain of Rudhira is necessary and sufficient for MT-IF cross-linking and cell migration. Pharmacologically restoring MT stability rescues gross cytoskeleton organization and angiogenic sprouting in Rudhira-depleted cells. Our study identifies the novel and essential role of Rudhira in cytoskeletal cross-talk and assigns function to the conserved BCAS3 domain. Targeting Rudhira could allow tissue-restricted cytoskeleton modulation to control cell migration and angiogenesis in development and disease.


2016 ◽  
Vol 23 (10) ◽  
pp. 1702-1716 ◽  
Author(s):  
A Fouqué ◽  
E Lepvrier ◽  
L Debure ◽  
Y Gouriou ◽  
M Malleter ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Sophia R. Majeed ◽  
Lavanya Vasudevan ◽  
Chih-Ying Chen ◽  
Yi Luo ◽  
Jorge A. Torres ◽  
...  

2013 ◽  
Vol 203 (4) ◽  
pp. 673-689 ◽  
Author(s):  
Ah-Lai Law ◽  
Anne Vehlow ◽  
Maria Kotini ◽  
Lauren Dodgson ◽  
Daniel Soong ◽  
...  

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


2009 ◽  
Vol 20 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Wei Zuo ◽  
Ye-Guang Chen

Transforming growth factor (TGF)-β regulates a spectrum of cellular events, including cell proliferation, differentiation, and migration. In addition to the canonical Smad pathway, TGF-β can also activate mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and small GTPases in a cell-specific manner. Here, we report that cholesterol depletion interfered with TGF-β–induced epithelial-mesenchymal transition (EMT) and cell migration. This interference is due to impaired activation of MAPK mediated by cholesterol-rich lipid rafts. Cholesterol-depleting agents specifically inhibited TGF-β–induced activation of extracellular signal-regulated kinase (ERK) and p38, but not Smad2/3 or Akt. Activation of ERK or p38 is required for both TGF-β–induced EMT and cell migration, whereas PI3K/Akt is necessary only for TGF-β–promoted cell migration but not for EMT. Although receptor heterocomplexes could be formed in both lipid raft and nonraft membrane compartments in response to TGF-β, receptor localization in lipid rafts, but not in clathrin-coated pits, is important for TGF-β–induced MAPK activation. Requirement of lipid rafts for MAPK activation was further confirmed by specific targeting of the intracellular domain of TGF-β type I receptor to different membrane locations. Together, our findings establish a novel link between cholesterol and EMT and cell migration, that is, cholesterol-rich lipid rafts are required for TGF-β–mediated MAPK activation, an event necessary for TGF-β–directed epithelial plasticity.


2019 ◽  
Vol 30 (1) ◽  
pp. 69-81 ◽  
Author(s):  
Tsai-Shin Chiang ◽  
Ming-Chieh Lin ◽  
Meng-Chen Tsai ◽  
Chieh-Hsin Chen ◽  
Li-Ting Jang ◽  
...  

Cell migration is a highly regulated event that is initiated by cell membrane protrusion and actin reorganization. Robo1, a single-pass transmembrane receptor, is crucial for neuronal guidance and cell migration. ADP-ribosylation factor (Arf)–like 4A (Arl4A), an Arf small GTPase, functions in cell morphology, cell migration, and actin cytoskeleton remodeling; however, the molecular mechanisms of Arl4A in cell migration are unclear. Here, we report that the binding of Arl4A to Robo1 modulates cell migration by promoting Cdc42 activation. We found that Arl4A interacts with Robo1 in a GTP-dependent manner and that the Robo1 amino acid residues 1394–1398 are required for this interaction. The Arl4A-Robo1 interaction is essential for Arl4A-induced cell migration and Cdc42 activation but not for the plasma membrane localization of Robo1. In addition, we show that the binding of Arl4A to Robo1 decreases the association of Robo1 with the Cdc42 GTPase-activating protein srGAP1. Furthermore, Slit2/Robo1 binding down-regulates the Arl4A-Robo1 interaction in vivo, thus attenuating Cdc42-mediated cell migration. Therefore, our study reveals a novel mechanism by which Arl4A participates in Slit2/Robo1 signaling to modulate cell motility by regulating Cdc42 activity.


Sign in / Sign up

Export Citation Format

Share Document