scholarly journals Análise dos parâmetros de corte sobre a rugosidade ra na retificação cilíndrica externa de passagem axial / Analysis of cutting parameters on roughness Ra in external transverse cylindrical grinding

2021 ◽  
Vol 7 (6) ◽  
pp. 64133-64140
Author(s):  
Bruno Simões Barini ◽  
Raphael Silva Lins ◽  
Vinicius Abrão da Silva Marques ◽  
Cleudes Guimarães ◽  
Armando Marques ◽  
...  

A rugosidade superficial das peças produzidas é o meio de avaliação mais utilizado em qualquer processo de usinagem, principalmente em retificação. Neste estudo, foram aplicados sobre uma peça de aço ABNT 1020 diferentes configurações de usinagem, a fim de investigar a influência do avanço, da relação de velocidade e do sentido de corte, concordante e discordante sobre um dos aspectos da integridade superficial da peça usinada. Por fim, foi verificado que a razão entre a velocidade periférica do rebolo () em relação à velocidade da peça (), teve maior influência na rugosidade superficial média (Ra) do que o avanço de corte (f). 

Author(s):  
Tuan-Linh Nguyen

The selection of the optimal external cylindrical grinding conditions importantly contributes to increase of productivity and quality of the products. The external cylindrical grinding is a method of finishing machine elements surface with an indeterminate blade shape. External cylindrical grinding can process surfaces that require high gloss and precision, although it can also be used to remove large surplus stock. Therefore, multi objective optimization for the external cylindrical grinding process is a problem with high complexity. In this study, an experimental study was performed to improve the productivity and quality of grinding process. By using the experimental date, the surface roughness, cutting force, and vibrations were modeled. To achieve the minimum value of surface roughness and maximum value of material removal rate, the optimal values of external cylindrical grinding conditions were determined by using the combination of Genetic Algorithms (GAs) and weighting method. The optimum values of surface roughness and material removal rate are 0.510 μm and 5.906 mm2/s, respectively. The obtained optimal values of cutting parameters were a feed rate of 0.3 mm/rev, a workpiece speed of 188.1 rpm, a cutting depth of 0.015 mm, and a workpiece Rockwell hardness of 54.78 HRC. The optimal values of cutting parameters, and workpiece hardness were successfully verified by comparing of experimental and predicted results. The approach method of this study can be applied in industrial machining to improve the productivity and quality of the products in external cylindrical grinding process of the T1 tool steel


Author(s):  
Murilo Pereira Lopes ◽  
Jose Rubens Gonçalves Carneiro ◽  
Gilmar Cordeiro da Silva ◽  
Carlos Eduardo Santos ◽  
Ítalo Bruno dos Santos

2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1143-1153
Author(s):  
Yousif K. Shounia ◽  
Tahseen F. Abbas ◽  
Raed R. Shwaish

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


Sign in / Sign up

Export Citation Format

Share Document