scholarly journals Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qiangqiang Zhang ◽  
Yaxiang Lu ◽  
Weichang Guo ◽  
Yuanjun Shao ◽  
Lilu Liu ◽  
...  

NASICON- (Na superionic conductor-) based solid-state electrolytes (SSEs) are believed to be attracting candidates for solid-state sodium batteries due to their high ionic conductivity and prospectively reliable stability. However, the poor interface compatibility and the formation of Na dendrites inhibit their practical application. Herein, we directly observed the propagation of Na dendrites through NASICON-based Na3.1Zr2Si2.1P0.9O12 SSE for the first time. Moreover, a fluorinated amorphous carbon (FAC) interfacial layer on the ceramic surface was simply developed by in situ carbonization of PVDF to improve the compatibility between Na metal and SSEs. Surprisingly, Na dendrites were effectively suppressed due to the formation of NaF in the interface when molten Na metal contacts with the FAC layer. Benefiting from the optimized interface, both the Na||Na symmetric cells and Na3V2(PO4)3||Na solid-state sodium batteries deliver remarkably electrochemical stability. These results offer benign reference to the maturation of NASICON-based solid-state sodium batteries.

2017 ◽  
Vol 5 (47) ◽  
pp. 24677-24685 ◽  
Author(s):  
Renjie Chen ◽  
Wenjie Qu ◽  
Ji Qian ◽  
Nan Chen ◽  
Yujuan Dai ◽  
...  

We fabricate a high-safety solid-state electrolyte by in situ immobilizing ionic liquids within a nanoporous zirconia-supported matrix.


Author(s):  
Jiawei Wu ◽  
Jing Chen ◽  
Xiaodong Wang ◽  
An'an Zhou ◽  
Zhenglong Yang

For the higher safety and energy density, solid-state electrolyte with better mechanical strength, thermal and electrochemical stability is a perfect choice. To improve the performance of PEO, usage of low-cost...


2019 ◽  
Vol 21 (48) ◽  
pp. 26358-26367
Author(s):  
Hanghui Liu ◽  
Zhenhua Yang ◽  
Qun Wang ◽  
Xianyou Wang ◽  
Xingqiang Shi

A solid-state electrolyte (L7P3S10.25O0.75) with good ionic conductivity and electrochemical stability is successfully designed by oxygen doping.


2021 ◽  
Author(s):  
Guuanming Yang ◽  
Yanfang Zhai ◽  
Jianyao Yao ◽  
Shufeng Song ◽  
Liyang Lin ◽  
...  

We report rare-earth triflate catalyst Sc(OTf)3 for ring-opening polymerization of 1,3-dioxolane in-situ producing quasi-solid-state poly(1,3-dioxolane) electrolyte, which not only demonstrates superior ionic conductivity of 1.07 mS cm-1 at room temperature,...


2016 ◽  
Vol 4 (41) ◽  
pp. 15823-15828 ◽  
Author(s):  
Zhizhen Zhang ◽  
Qiangqiang Zhang ◽  
Cheng Ren ◽  
Fei Luo ◽  
Qiang Ma ◽  
...  

A solvent-free ceramic/polymer composite solid electrolyte has been proposed and demonstrated well in solid-state Na batteries for the first time.


2021 ◽  
Author(s):  
Xiaowei Chi ◽  
Ye Zhang ◽  
Fang Hao ◽  
Steven Kmiec ◽  
Hui Dong ◽  
...  

Abstract All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage applications. To date, however, there are no commercialized ASSSBs due in part to the lack of a solid electrolyte (SE) that meets all of the requirements of low cost, facile fabrication, high Na+ conductivity, electrochemical stability, and is resistant to sodium metal dendrite penetration. In this work, we report a family of oxysulfide glass SEs (Na3PS4−xOx, where 0 < x ≤ 0.6) that combine the advantages of sulfides and oxides, we demonstrate stable electrochemical cycling of Na metal for hundreds of hours and the highest critical current density of 2.3 mA cm−2 among all Na-ion conducting sulfide-based SEs. These performance enhancements are found to be associated with the ability of the oxysulfide glass to undergo room temperature pressure induced amorphization that creates a fully homogeneous glass structure that has robust mechanics and substantial chemical and electrochemical stability. Microstructural analysis revealed that the added oxygen creates a glassy network structure by forming bridging oxygen units resulting in a significantly stronger defect-free glass network and two orders of magnitude lower electronic conductivity compared to the fully ionic and non-network structure of Na3PS4. We show ambient-temperature sodium-sulfur batteries (ATSSBs) can be fabricated from these SEs that demonstrate the highest specific energy among the current sodium batteries. The unique room-temperature processing of composite SE structures may provide a sustainable path forward for the further development of ATSSBs in particular and ASSSBs in general.


Author(s):  
Yang Yang ◽  
Jie Cui ◽  
Hui-Juan Guo ◽  
Xi Shen ◽  
Yuan Yao ◽  
...  

Intensive understanding of the Li-ion transport mechanism in solid-state-electrolytes (SSEs) is crucial for the buildup of industrially scalable solid-state batteries. Here, we report the charge distribution near the electrode/SSEs interface...


Sign in / Sign up

Export Citation Format

Share Document