Paleomagnetism and orientation of Precambrian dykes, eastern Lake Superior region, and their use in estimates of crustal tilting

1988 ◽  
Vol 25 (5) ◽  
pp. 732-743 ◽  
Author(s):  
H. C. Halls ◽  
E. G. Shaw

Archean rocks form the eastern margin of the 1.1 Ga old Central North American rift along the eastern shore of Lake Superior and have been tilted westwards in response to rifting. Paleomagnetic and structural data from 2.6 Ga old Matachewan dykes suggest a westward crustal tilt of about 60°, which agrees well with dips recorded in nearby Keweenawan volcanics that rest directly on basement rocks. The Matachewan dyke swarm occurs throughout the east shore region of Lake Superior, whereas Keweenawan supracrustal sequences, which give a more precise estimate of tilt, are restricted to a few isolated shoreline patches. Estimates of crustal tilt can be obtained from the dykes on a regional basis, thus generating a more complete picture of basement deformation adjacent to a major intracratonic rift.

Author(s):  
Lotte Melchior Larsen ◽  
David C. Rex ◽  
W. Stuart Watt ◽  
Philip G. Guise

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Melchior Larsen, L., Rex, D. C., Watt, W. S., & Guise, P. G. (1999). 40Ar–39Ar dating of alkali basaltic dykes along the southwest coast of Greenland: Cretaceous and Tertiary igneous activity along the eastern margin of the Labrador Sea. Geology of Greenland Survey Bulletin, 184, 19-29. https://doi.org/10.34194/ggub.v184.5227 _______________ A 380 km long coast-parallel alkali basalt dyke swarm cutting the Precambrian basement in south-western Greenland has generally been regarded as one of the earliest manifestations of rifting during continental stretching prior to break-up in the Labrador Sea. Therefore, the age of this swarm has been used in models for the evolution of the Labrador Sea, although it has been uncertain due to earlier discrepant K–Ar dates. Two dykes from this swarm situated 200 km apart have now been dated by the 40Ar–39Ar step-heating method. Separated biotites yield plateau ages of 133.3 ± 0.7 Ma and 138.6 ± 0.7 Ma, respectively. One of the dykes has excess argon. Plagioclase separates confirm the biotite ages but yield less precise results. The age 133– 138 Ma is earliest Cretaceous, Berriasian to Valanginian, and the dyke swarm is near-coeval with the oldest igneous rocks (the Alexis Formation) on the Labrador shelf. A small swarm of alkali basalt dykes in the Sukkertoppen (Maniitsoq) region of southern West Greenland was also dated. Two separated kaersutites from one sample yield an average plateau age of 55.2 ± 1.2 Ma. This is the Paleocene–Eocene boundary. The swarm represents the only known rocks of that age within several hundred kilometres and may be related to changes in the stress regime during reorganisation of plate movements at 55 Ma when break-up between Greenland and Europe took place.


1997 ◽  
Vol 34 (4) ◽  
pp. 562-575 ◽  
Author(s):  
Matthew L. Manson ◽  
Henry C. Halls

Major reverse faults associated with the late compressional phase of the 1.1 Ga Midcontinent rift in the western Lake Superior region appear to cut across the rift at the eastern end of the lake and join with reverse faults on the eastern shoreline, defined on the basis of geological and potential field data. The continuation of the faults across eastern Lake Superior is inferred on evidence drawn from nearshore shipborne magnetic surveys together with new interpretations of published bathymetric and GLIMPCE aeromagnetic data. In the Archean Superior Province about 100 km east of Lake Superior, paleomagnetic and petrographic data from the 2.45 Ga Matachewan dyke swarm show that the Kapuskasing Zone, a narrow belt of uplifted crust, can be extended to within 50 km of the Lake Superior shoreline and has bounding reverse faults that are almost continuous with two faults of similar dip and sense of displacement that define the inversion of the Midcontinent rift in the central and western parts of the lake. Since the Kapuskasing Zone is dominantly a Paleoproterozoic (about 1.9 Ga) structure, the continuity suggests that the Lake Superior faults, whose last major activity was during the Grenville Orogen, may represent reactivation of much older faults that were part of an extended Kapuskasing structure. Within the Superior Province to the north and east of Lake Superior, published radiometric data on biotites suggest a series of alternating crustal blocks of varying tectonic stability, separated by northeast-trending faults. The Lake Superior segment of the Midcontinent rift developed within the most unstable block, bounded by the Gravel River fault to the northwest and the Ivanhoe Lake fault (the eastern margin of the Kapuskasing Zone) to the southeast.


Solid Earth ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 1099-1122 ◽  
Author(s):  
David Mair ◽  
Alessandro Lechmann ◽  
Marco Herwegh ◽  
Lukas Nibourel ◽  
Fritz Schlunegger

Abstract. The northwest (NW) rim of the external Aar Massif was exhumed from  ∼ 10 km depth to its present position at 4 km elevation above sea level during several Alpine deformation stages. Different models have been proposed for the timing and nature of these stages. Recently proposed exhumation models for the central, internal Aar Massif differ from the ones established in the covering Helvetic sedimentary units. By updating pre-existing maps and collecting structural data, a structural map and tectonic section were reconstructed. Those were interpreted together with microstructural data and peak metamorphic temperature estimates from collected samples to establish a framework suitable for both basement and cover. Deformation temperatures range between 250 and 330 °C, allowing for semi-brittle deformation in the basement rocks, while the calcite-dominated sedimentary rocks deform in a ductile manner at these conditions. Although field data allow to distinguish multiple deformation stages before and during Aar Massif's exhumation, all related structures formed under similar P, T conditions at the investigated NW rim. In particular, we find that the exhumation occurred during two stages of shearing in Aar Massif's basement, which induced in the sedimentary rocks first a phase of folding and then a period of thrusting, accompanied by the formation of a new foliation.


1996 ◽  
Vol 33 (12) ◽  
pp. 1583-1595 ◽  
Author(s):  
Kenneth L. Buchan ◽  
Henry C. Halls ◽  
James K. Mortensen

We report the first detailed study of the paleomagnetism, U–Pb geochronology and major element geochemistry of Paleoproterozoic north-trending Marathon dykes north of Lake Superior. The paleomagnetic and geochemical results demonstrate that Marathon dykes can be divided into two subsets, one of normal magnetic polarity, the other of reverse polarity. Normal and reverse Marathon paleomagnetic poles, at 43°N, 196°E (dm = 9°, dp = 7°, number of dykes N = 16) and 51°N, 175°E (dm = 9°, dp = 6°, N = 12), respectively, are statistically distinct and may indicate different ages of normal and reverse dyke emplacement, A U–Pb baddeleyite age of [Formula: see text] Ma has been obtained at a normally magnetized Marathon paleomagnetic site. The reversely magnetized Marathon dykes are undated, but have a paleopole rather close to that of the reversely magnetized [Formula: see text] Ma Fort Frances dykes and major element geochemical signatures as portrayed on Jensen plots that are identical to those of the Fort Frances swarm. Therefore, reverse Marathon and Fort Frances dykes could define a giant radiating dyke swarm focused south of Lake Superior, supporting models that associate these dykes with Paleoproterozoic rifting along the southern margin of the Superior Province. The Marathon and Fort Frances paleopoles continue a northwesterly trend in southern Superior Province paleopoles, which has recently been defined by results for [Formula: see text] Ma Senneterre dykes and 2167 ± 2 Ma Biscotasing dykes. This trend contrasts with previous widely used polar wander paths for the same period that young in the opposite direction and illustrates the importance of collaborative studies of paleomagnetism and U–Pb geochronology.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Oumarou Faarouk Nkouandou ◽  
Jacques-Marie Bardintzeff ◽  
Oumar Mahamat ◽  
Aminatou Fagny Mefire ◽  
Alembert Alexandre Ganwa

AbstractDolerite dykes are widespread in the Mongo area within the granitic Guéra Massif (Chad, Central Africa). Dykes are several hundred metres to several kilometres long, a metre to decametre thick, and vertical, crosscutting the Pan-African granitic basement rocks. They are controlled by major Pan-African NNE-SSW, NE-SW and ENE-WSW faults. Rocks constituting the dykes exhibit typical doleritic textures (


2018 ◽  
Author(s):  
David Mair ◽  
Alessandro Lechmann ◽  
Marco Herwegh ◽  
Lukas Nibourel ◽  
Fritz Schlunegger

Abstract. The NW rim of the external Aar Massif was exhumed from ~ 10 km depth to its present position at 4 km elevation above sea level during several Alpine deformation stages. Different models have been proposed for the timing and nature of these stages. Recently proposed exhumation models for the central, internal Aar Massif differ from the ones established in the covering Helvetic sedimentary units. By updating pre-existing maps and collecting structural data, a structural map and tectonic section was reconstructed. Those were interpreted together with micro-structural data and peak metamorphic temperature estimates from collected samples to establish a framework suitable for both basement and cover. Temperatures at deformation ranged from 250 °C to 330 °C allowing for semi-brittle deformation in the basement rocks, while the calcite dominated sediments deform ductile at these conditions. Although field data allows to distinguish multiple deformation stages before and during the Aar Massifs rise, all related structures formed under similar P, T conditions at the investigated NW rim. We find that the exhumation occurred during 2 stages of shearing in the Aar Massif basement, which induced in the sediments first a phase of folding and then a period of thrusting, accompanied by the formation of a new foliation. We can link this uplift and exhumation history to recently published large-scale block extrusion models.


1990 ◽  
Vol 27 (9) ◽  
pp. 1194-1199 ◽  
Author(s):  
Kenneth W. Klewin ◽  
Jonathan H. Berg

The Keweenawan (1100 Ma) Mamainse Point volcanics, located along the eastern shore of Lake Superior in Ontario, formed in the Midcontinent Rift of North America. They are a 5250 m thick sequence of over 350 predominantly basaltic lava flows. The Mamainse Point section is the most continuous Keweenawan volcanic sequence and spans nearly the entire igneous history of the rift. The lower part of the section consists of high-MgO picrites and basalts, but the upper part of the section is composed of olivine tholeiites intercalated with numerous conglomerate layers. Major- and trace-element data reveal that the section consists of numerous stratigraphically constrained, geochemically distinct groups of lava flows. The comprehensive geochemical data on the entire sequence indicate that the section has no repetition due to faulting, as has been suggested by other workers on the basis of paleomagnetic studies. Evidently, the three paleomagnetic reversals previously found in the Mamainse Point section are real, and therefore there were multiple paleomagnetic reversals during Keweenawan time.


2016 ◽  
Vol 153 (5-6) ◽  
pp. 1136-1165 ◽  
Author(s):  
A. HUGH N. RICE ◽  
MARK W. ANDERSON

AbstractThree models are evaluated for restoring basement rocks coring tectonic windows (Window-Basement) in the Scandinavian Caledonides; parautochthonous (Model I) and allochthonous (models II/III), with initial imbrication of the Window-Basement post-dating or pre-dating, respectively, that in the external imbricate zone (Lower Allochthon). In Model I, the Window-Basement comes from the eastern margin of the basin now imbricated into the Lower Allochthon, while in models II/III it comes from the western margin. In Model II, the Window-Basement formed a basement-high between Tonian and Cryogenian sediments imbricated into the Middle and Lower allochthons; in Model III deposition of the Lower Allochthon sediments commenced in Ediacaran times. Balanced cross-sections and branch-line restorations of four transects (Finnmark–Troms, Västerbotten–Nordland, Jämtland–Trøndelag, Telemark–Møre og Romsdal) show similar restored lengths for the models in two transects and longer restorations for models II/III in the other transects. Model I can result inc.280 km wide gaps in the restored Lower Allochthon, evidence for which is not seen in the sedimentology. The presence of <3 km thick alluvial-fan deposits at the base of the Middle Allochthon indicates proximal, rapidly uplifting basement during Tonian–Cryogenian periods, taken as the origin of the Window-Basement during thrusting in models II/III. Model I requires multiple changes in thrusting-direction and predicts major thrusts or back-thrusts, currently unrecognized, separating parts of the Lower Allochthon; neither are required in models II/III. Metamorphic data are consistent with models II/III. Despite considerable along-strike structural variability in the external Scandinavian Caledonides, models II/III are preferred for the restoration of the Window-Basement.


Sign in / Sign up

Export Citation Format

Share Document