scholarly journals INFLUENCE INORGANIC FILLERS ON THE PROPERTY OF OLIGOMER-POLYMER COMPOSITION

Author(s):  
M. H. Dkhaibe ◽  
M. F. Tabshe ◽  
M. A. Khatib ◽  
M. Maksud ◽  
N. V. Sidorenko ◽  
...  

There were results of research on the influence of inorganic filler of tungstate on the curing process, stress-strain properties and fire resistance of oligomer-polymer composition based on epoxy resin ED-20 with PVC cured by polyamine in this paper. It's showed on the increase physical-mechanical property and fire resistant polymer compositions incorporated tungstate.

Author(s):  
M. H. Dkhaibe ◽  
M. F. Tabshe ◽  
M. A. Khatib ◽  
M. Maksud ◽  
N. V. Sidorenko ◽  
...  

There were results of research on the influence of inorganic filler of tungstate on the curing process, stress-strain properties and fire resistance of polymer composition based on epoxy resin ED-20 cured by polyamine in this paper. It's showed on the increase physical-mechanical property and fire resistant polymer compositions incorporated tungstate.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 761
Author(s):  
Haitao Hu ◽  
Xiaohong Zhang ◽  
Dingping Zhang ◽  
Junguo Gao ◽  
Chunxiu Hu ◽  
...  

To investigate the inhomogeneous distribution of electric fields in insulating equipment and components, five nonlinear-conductance composite materials based on epoxy resin (EP) (nano-SiC/EP, nano-ZnO/EP, micro-ZnO/EP, nano-SiC/ZnO/EP, and nano-micro-SiC/ZnO/EP), were prepared using nano-SiC, nano-ZnO, and micro-ZnO particles as fillers. The mass fractions of the inorganic fillers were 1, 3, and 5 wt%, respectively. The direct current (DC) voltage characteristics of the composites showed that the electrical conductivities and nonlinear coefficients of the composites utilizing single-filler types increased with increasing inorganic filler content. Under the same conditions, the conductivity and nonlinear coefficient of SiC/EP were both larger than those of the nano-ZnO/EP and micro-ZnO/EP. However, the nonlinear coefficient of the composites was significantly affected by the simultaneous addition of the two inorganic fillers, micro-ZnO and nano-SiC. When the content ratio of micro-ZnO to nano-SiC was 2:3, the nonlinear coefficient of the composite reached a maximum value of 3.506, significantly higher than those of the other samples. Compared with the nano-SiC/EP, micro-ZnO/EP and nano-ZnO/EP composites with 5 wt% inorganic filler, the nonlinear coefficient of the two-filler composite was greater by a factor of 0.82, 2.48, and 5.01, respectively.


1997 ◽  
Vol 49 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Susumu Tatsumiya ◽  
Katsumasa Yokokawa ◽  
Kyosuke Miki
Keyword(s):  

2021 ◽  
pp. 51230
Author(s):  
Fu‐Qu Pang ◽  
Xin‐Duo Liu ◽  
Xian‐Ting Zheng ◽  
Yu‐Cai Lin ◽  
Rong‐Kun Jian

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 614
Author(s):  
Vo Pham Hoang Huy ◽  
Seongjoon So ◽  
Jaehyun Hur

Among the various types of polymer electrolytes, gel polymer electrolytes have been considered as promising electrolytes for high-performance lithium and non-lithium batteries. The introduction of inorganic fillers into the polymer-salt system of gel polymer electrolytes has emerged as an effective strategy to achieve high ionic conductivity and excellent interfacial contact with the electrode. In this review, the detailed roles of inorganic fillers in composite gel polymer electrolytes are presented based on their physical and electrochemical properties in lithium and non-lithium polymer batteries. First, we summarize the historical developments of gel polymer electrolytes. Then, a list of detailed fillers applied in gel polymer electrolytes is presented. Possible mechanisms of conductivity enhancement by the addition of inorganic fillers are discussed for each inorganic filler. Subsequently, inorganic filler/polymer composite electrolytes studied for use in various battery systems, including Li-, Na-, Mg-, and Zn-ion batteries, are discussed. Finally, the future perspectives and requirements of the current composite gel polymer electrolyte technologies are highlighted.


2021 ◽  
Author(s):  
SAGAR M. DOSHI, SAGAR M. DOSHI, ◽  
NITHINKUMAR MANOHARAN ◽  
BAZLE Z. (GAMA) HAQUE, ◽  
JOSEPH DEITZEL ◽  
JOHN W. GILLESPIE, JR.

Epoxy resin-based composite panels used for armors may be subjected to a wide range of operating temperatures (-55°C to 76°C) and high strain rates on the order of 103-104 s-1. Over the life cycle, various environmental factors also affect the resin properties and hence influence the performance of the composites. Therefore, it is critical to determine the stress-strain behavior of the epoxy resin over a wide range of strain rates and temperatures for accurate multi-scale modeling of composites and to investigate the influence of environmental aging on the resin properties. Additionally, the characterization of key mechanical properties such as yield stress, modulus, and energy absorption (i.e. area under the stress-strain curve) at varying temperatures and moisture can provide critical data to calculate the material operating limits. In this study, we characterize mechanical properties of neat epoxy resin, SC-15 (currently used in structural armor) and RDL-RDC using uniaxial compression testing. RDL-RDC, developed by Huntsman Corporation, has a glass transition temperature of ~ 120°C, compared to ~ 85°C of SC-15. A split Hopkinson pressure bar is used for high strain rate testing. Quasistatic testing is conducted using a screw-driven testing machine (Instron 4484) at 10-3 s-1 and 10-1 s-1 strain rates and varying temperatures. The yield stress is fit to a modified Eyring model over the varying strain rates at room temperature. For rapid investigation of resistance to environmental aging, accelerated aging tests are conducted by immersing the specimens in 100°C water for 48 hours. Specimens are conditioned in an environmental chamber at 76 °C and 88% RH until they reach equilibrium. Tests are then conducted at five different temperatures from 0°C to 95°C, and key mechanical properties are then plotted vs. temperature. The results presented are an important step towards developing a methodology to identify environmental operating conditions for composite ground vehicle applications.


Sign in / Sign up

Export Citation Format

Share Document