amine curing
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 2101 (1) ◽  
pp. 012047
Author(s):  
Ming Xiao ◽  
Xiaojiang Sun ◽  
Huaqing Rong ◽  
Shuguang Bi ◽  
Jiagong Tang ◽  
...  

Abstract Epoxy structural adhesive has good mechanical properties, especially high adhesion, low shrinkage rate, and high stability, widely used in steel plate reinforcement, crack repair, bridge splicing, and concrete bonding, etc. However, due to the high cross-linking density and high internal stress after curing, its shortcomings, such as brittleness, the poor performance of fatigue resistance and heat resistance, limit its application in special track engineering. In this work, two kinds of epoxy structural adhesives (EPA-1, EPA-2) with low viscosity and room temperature curing were synthesized by selecting different bisphenol A epoxy resin and active diluent as component A and modified amine curing agent as component B. The results showed that EPA-1 and EPA-2 presented significant toughness compared with the classic construction adhesive (AralditeXH160). The yield strengths of EPA-1 and EPA-2 were 4.88 MPa and 13.13 MPa, and the shear strengths were 11.93 MPa and 13.08 MPa, respectively, showing good adhesive properties. In addition, the viscosities of EPA-1 and EPA-2 were 127 mPa·s and 308 mPa·s, respectively, and their decomposition temperatures were all above ∼280 °C, which indicated that the self-made epoxy structural adhesives could be used for the repair of cracks in the vibration subway tunnel.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3244
Author(s):  
Tsung-Yu Yu ◽  
Shih-Chieh Yeh ◽  
Jen-Yu Lee ◽  
Nae-Lih Wu ◽  
Ru-Jong Jeng

In this study, a series of crosslinked membranes were prepared as solid polymer electrolytes (SPEs) for all-solid-state lithium ion batteries (ASSLIBs). An epoxy-containing copolymer (glycidyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate, PGA) and two amine curing agents, linear Jeffamine ED2003 and hyperbranched polyethyleneimine (PEI), were utilized to prepare SPEs with various crosslinking degrees. The PGA/polyethylene oxide (PEO) blends were cured by ED2003 and PEI to obtain slightly and heavily crosslinked structures, respectively. For further optimizing the interfacial and the electrochemical properties, an interlocking bilayer membrane based on overlapping and subsequent curing of PGA/PEO/ED2003 and PEO/PEI layers was developed. The presence of this amino/epoxy network can inhibit PEO crystallinity and maintain the dimensional stability of membranes. For the slightly crosslinked PGA/PEO/ED2003 membrane, an ionic conductivity of 5.61 × 10−4 S cm−1 and a lithium ion transference number (tLi+) of 0.43 were obtained, along with a specific capacity of 156 mAh g−1 (0.05 C) acquired from an assembled half-cell battery. However, the capacity retention retained only 54% after 100 cycles (0.2 C, 80 °C), possibly because the PEO-based electrolyte was inclined to recrystallize after long term thermal treatment. On the other hand, the highly crosslinked PGA/PEO/PEI membrane exhibited a similar ionic conductivity of 3.44 × 10−4 S cm−1 and a tLi+ of 0.52. Yet, poor interfacial adhesion between the membrane and the cathode brought about a low specific capacity of 48 mAh g−1. For the reinforced interlocking bilayer membrane, an ionic conductivity of 3.24 × 10−4 S cm−1 and a tLi+ of 0.42 could be achieved. Moreover, the capacity retention reached as high as 80% after 100 cycles (0.2 C, 80 °C). This is because the presence of the epoxy-based interlocking bilayer structure can block the pathway of lithium dendrite puncture effectively. We demonstrate that the unique interlocking bilayer structure is capable of offering a new approach to fabricate a robust SPE for ASSLIBs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1990
Author(s):  
Maryam Jouyandeh ◽  
Vahideh Akbari ◽  
Seyed Mohammad Reza Paran ◽  
Sébastien Livi ◽  
Luanda Lins ◽  
...  

We synthesized pristine mica (Mica) and N-octadecyl-N’-octadecyl imidazolium iodide (IM) modified mica (Mica-IM), characterized it, and applied it at 0.1–5.0 wt.% loading to prepare epoxy nanocomposites. Dynamic differential scanning calorimetry (DSC) was carried out for the analysis of the cure potential and kinetics of epoxy/Mica and epoxy/Mica-IM curing reaction with amine curing agents at low loading of 0.1 wt.% to avoid particle aggregation. The dimensionless Cure Index (CI) was used for qualitative analysis of epoxy crosslinking in the presence of Mica and Mica-IM, while qualitative cure behavior and kinetics were studied by using isoconversional methods. The results indicated that both Mica and Mica-IM improved the curability of epoxy system from a Poor to Good state when varying the heating rate in the interval of 5–15 °C min−1. The isoconversional methods suggested a lower activation energy for epoxy nanocomposites with respect to the blank epoxy; thus, Mica and Mica-IM improved crosslinking of epoxy. The higher order of autocatalytic reaction for epoxy/Mica-IM was indicative of the role of liquid crystals in the epoxide ring opening. The glass transition temperature for nanocomposites containing Mica and Mica-IM was also lower than the neat epoxy. This means that nanoparticles participated the reaction because of being reactive, which decelerated segmental motion of the epoxy chains. The kinetics of the thermal decomposition were evaluated for the neat and mica incorporated epoxy nanocomposites epoxy with varying Mica and Mica-IM amounts in the system (0.5, 2.0 and 5.0 wt.%) and heating rates. The epoxy/Mica-IM at 2.0 wt.% of nanoparticle showed the highest thermal stability, featured by the maximum value of activation energy devoted to the assigned system. The kinetics of the network formation and network degradation were correlated to demonstrate how molecular-level transformations can be viewed semi-experimentally.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1348
Author(s):  
Christian Bethke ◽  
Sebastian Manfred Goller ◽  
Uy Lan Du Ngoc ◽  
Simon Tino Kaysser ◽  
Volker Altstädt ◽  
...  

The use of amine-based carbamates with their dual function, acting as amine curing agents and CO2 blowing agents after their decomposition without by-products, are promising for ecofriendly epoxy foams as high-performance materials. However, controlling cell morphology requires a proper adjustment of the viscosity at the foaming step. The viscosity is altered not only by blending neat amine and its derived carbamate at a fixed pre-curing time, but also by changing the pre-curing time at a fixed blend ratio. Within this study, diglycidylether of bisphenol A (DGEBA) epoxy resin is mixed with different blend ratios of isophorone diamine (IPDA) and its derived carbamate (B-IPDA). The systems are characterized by DSC and rheology experiments to identify the pre-curing effects on the derived epoxy foams. Epoxy foams at a blend ratio of 30/70w IPDA/B-IPDA showed the best foam morphology and an optimum Tg compared to other blend ratios. Furthermore, it was found that both pre-curing times, 2 h and 3 h, for the 30/70w IPDA/B-IPDA system reveal a more homogeneous cell structure. The study proves that the blending of neat amine and carbamate is beneficial for the foaming performance of carbamate systems.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 297
Author(s):  
Natalia V. Bornosuz ◽  
Irina Yu. Gorbunova ◽  
Viktoria V. Petrakova ◽  
Vyacheslav V. Shutov ◽  
Vyacheslav V. Kireev ◽  
...  

The influence of epoxycyclophosphazene modifier on the process of epoxy-amine curing was studied by differential scanning calorimetry (DSC). The study revealed that the curing process of epoxyphosphazene binders with 4′4′diaminodiphenylsulfone (DDS) provides more complete curing of the formulations in comparison with ones applying low molecular-weight polyamide curing agent (L-20). The isothermal kinetics of curing was described by means of model fitting and the isoconversional approach (Friedman method). Accurate n-order approximation was obtained for all systems under study. In particular, the 2-order equation fits well with the main part of curing excluding high degrees of conversion. The process of curing could be distinguished into three zones. The transition from zone 2 to zone 3 correlates with gelation. According to the isoconversional analysis by Friedman method, the diffusion-controlled mechanism is found at final stage of curing.


2020 ◽  
Vol 93 (12) ◽  
pp. 1845-1851
Author(s):  
V. G. Zheleznyak ◽  
M. A. Khaskov ◽  
A. A. Mel’nikov ◽  
A. S. Serdtselyubova

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2413 ◽  
Author(s):  
Yubo Liu ◽  
Xinkuan Liu ◽  
Ping Liu ◽  
Xiaohong Chen ◽  
Deng-Guang Yu

To address the life span of materials in the process of daily use, new types of structural nanofibers, fabricated by multifluid electrospinning to encapsulate both epoxy resin and amine curing agent, were embedded into an epoxy matrix to provide it with self-healing ability. The nanofibers, which have a polyacrylonitrile sheath holding two separate cores, had an average diameter of 300 ± 140 nm with a uniform size distribution. The prepared fibers had a linear morphology with a clear three-chamber inner structure, as verified by scanning electron microscope and transmission electron microscope images. The two core sections were composed of epoxy and amine curing agents, respectively, as demonstrated under the synergistic characterization of Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry. The TGA results disclosed that the core-shell nanofibers contained 9.06% triethylenetetramine and 20.71% cured epoxy. In the electrochemical corrosion experiment, self-healing coatings exhibited an effective anti-corrosion effect, unlike the composite without nanofibers. This complex nanostructure was proven to be an effective nanoreactor, which is useful to encapsulate reactive fluids. This engineering process by multiple-fluid electrospinning is the first time to prove that this special multiple-chamber structure has great potential in the field of self-healing.


ACS Omega ◽  
2020 ◽  
Vol 5 (36) ◽  
pp. 23268-23275
Author(s):  
Sizhu Yu ◽  
Xiaodong Li ◽  
Meishuai Zou ◽  
Xiaoyan Guo ◽  
Haoxuan Ma ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 317 ◽  
Author(s):  
Liang Li ◽  
Zaisheng Cai

In this study, a flame-retardant additive with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) groups denoted DSD was successfully synthesized from DOPO, 4,4′-diaminodiphenyl sulfone (DDS), and salicylaldehyde. The chemical structure of DSD was characterized by FTIR–ATR, NMR, and elemental analysis. DSD was used as an amine curing agent, and the transparent, tensile strength-enhanced epoxy resins named EP–DSD were prepared via thermal curing reactions among the diglycidyl ether of bisphenol A (DGEBA), 4,4′-diaminodiphenylmethane (DDM), and DSD. The flame-retardancy of composites was studied by the limiting oxygen index (LOI) and UL-94 test. The LOI values of EP–DSD composites increased from 30.7% for a content of 3 wt % to 35.4% for a content of 9 wt %. When the content of DSD reached 6 wt %, a V-0 rating under the UL-94 vertical test was achieved. SEM photographs of char residues after the UL-94 test indicate that an intumescent and tight char layer with a porous structure inside was formed. The TGA results revealed that EP–DSD thermosets decomposed ahead of time. The graphitization degree of the residual chars was also investigated by laser Raman spectroscopy. The measurement of tensile strength at breaking point shows that the loading of DSD increases the tensile strength of epoxy thermosets. Py-GC/MS analysis shows the presence of phosphorus fragments released during EP–DSD thermal decomposition, which could act as free radical inhibitors in the gas phase. Owing to the promotion of the formation of intumescent and compact char residues in the condensed phase and nonflammable phosphorus fragments formed from the decomposition of DOPO groups, EP–DSD composites displayed obvious flame-retardancy.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 218 ◽  
Author(s):  
Anna Rudawska ◽  
Valentina Brunella

This study investigates the effect of operating factors such as seasoning in water solution containing iron (II) sulfate—FeSO4 (5 different water solution variants were tested) on the mechanical properties of an adhesive compound made of epoxy resin and amine curing agent, in a ratio of 100 g resin to 12 g curing agent. Strength tests of cured adhesive compound samples were performed on the Zwick/Roell Z150 testing machine in compliance with the EN ISO 604 standard. During the tests, compression modulus, compressive strength and compressive strain were measured. Obtained results served as a basis for analyzing the effect of a water environment containing iron sulfate on a given adhesive compound. It has been found that too high iron sulfate content in water has a negative effect on the mechanical properties of adhesive compound samples.


Sign in / Sign up

Export Citation Format

Share Document