scholarly journals EVALUATING AND PREVENTING POLLUTION FROM NAVIGATION IN THE BLACK SEA COASTAL AREAS IN THE CONTEXT OF CLIMATE CHANGE

2020 ◽  
Vol 9 (4) ◽  
pp. 19-24
Author(s):  
Alina GÎRLEANU ◽  
Eugen RUSU

Nowadays, studying climate change of the coastal zones is of utmost importance, due to the fact that global warming endangers in particular sea coast regions. As a matter of fact, the scientist and one of the founders of physical climatology, Budiko, in 1972, stated that first of all, due to the rising use of fossil fuels, a significant rise in the air temperature will occur, then extensive flooding of coastal areas will be caused by this appearance of climate change, ecomigration will follow, along with massive economical loss, generating a chain-reaction process. Taking the Black Sea into consideration, it is more than clear that pollution has reached record levels during the last decades. Hydrocarbons, which are naturally-occurring compounds that form the basis of coal, natural gas and crude oil, are responsible for more than 80% of energy consumption, but unfortunately, it is now common knowledge that using them as the primary source of energy, it contributes to increasing climate changes. Furthermore, marine accidents, such as collisions and explosions, contribute significantly to pollution, with consequences on coastal ecosystems and onshore human activities. This paper aims to lay emphasis on the impact that navigation, alongside with climate change has on the marine environment and analyse the available data regarding the marine accidents using satellite monitoring in order to control and prevent disasters that may occur while operating ships at sea.

Author(s):  
T. V. Efremova ◽  
Yu. N. Goryachkin ◽  
◽  

Anthropogenic impact on lithodynamics of the coastal zone changes the natural dynamics of bottom sediments, which leads to increased abrasion and swelling of beaches, activation of landslide processes creating a threat of destruction of the coastal infrastructure. The article aims at providing an overview of the scientific literature on the anthropogenic impact on lithodynamics of the coastal zone of the southern and western coasts of the Black Sea (shores of Romania, Bulgaria and Turkey). The work shows that with all the differences in the natural conditions of the coastal zones of these countries the types of anthropogenic effects they undergo are almost the same. These include: hydrotechnical construction without regard to the impact on the neighbouring coast sections; reduction of solid river flow due to river regulation by reservoirs; construction of capital facilities directly on the beaches; illegal extraction of sand from beaches and river beds; dredging with sale of the extracted material to construction companies; covering of cliffs by various structures; destruction of coastal dunes, etc. The main negative consequences of these actions are reflected in disruption of natural dynamics and shortages of bottom sediments, changes in the coastline, reduced aesthetic attractiveness and accessibility of shores, destruction of coastal ecosystems. The article also provides information on the legislation of these countries regarding environmental management in the coastal zone


2019 ◽  
Vol 103 ◽  
pp. 01005
Author(s):  
Liliana Rusu

The objective of this study is to assess the future wind power potential in the Black Sea based on the wind fields provided by the most recent regional climate projections achieved in the framework of EURO-CORDEX project. The climate change impacts on the wind speed magnitude will bring changes in the local wind power generation. From this perspective, changes in the wind power potential along the 21st century in some reference locations of the Black Sea basin are investigated under the RCP4.5 scenario. The recent wind power conditions for a 30-year period (1976-2005) are assessed based on the results provided by the same RCM (Regional Climate Model) used to generate the future climate projections of the wind fields. The impact of the climate change on the future wind power potential is evaluated by comparisons between historical data and near-future (2021-2050) and more distant future (2071-2100) projections. Under the scenario considered, an increase of the mean wind power was observed until the middle of the 21st century, followed by a small decrease. From the seasonal analysis resulted that, in the reference points located on the western side, the projection of the wind energy in winter time suggests an increase until the end of the century. On the other hand, the linear regressions adjusted to the annual means do not indicate a significant trend.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Author(s):  
Alla Varenik ◽  
Alla Varenik ◽  
Sergey Konovalov ◽  
Sergey Konovalov

Atmospheric precipitations can be an important source of nutrients to open and coastal zones of marine ecosystem. Jickells [1] has published that atmospheric depositions can sup-port 5-25% of nitrogen required to primary production. Bulk atmospheric precipitations have been collected in a rural location at the Black Sea Crimean coast – Katsiveli settlement, and an urban location – Sevastopol city. Samples have been analyzed for inorganic fixed nitrogen (IFN) – nitrate, nitrite, and ammonium. Deposi-tions have been calculated at various space and time scales. The monthly volume weighted mean concentration of IFN increases from summer to winter in both locations. A significant local source of IFN has been revealed for the urban location and this source and its spatial influence have been quantified. IFN deposition with atmospheric precipitations is up to 5% of its background content in the upper 10 m layer of water at the north-western shelf of the Black Sea. Considering Redfield C:N ratio (106:16) and the rate of primary production (PP) in coastal areas of the Black Sea of about 100-130 g C m-2 year-1 we have assessed that average atmospheric IFN depositions may intensify primary production by 4.5% for rural locations, but this value is increased many-fold in urban locations due to local IFN sources.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 46
Author(s):  
Catalin Anton ◽  
Angela-Eliza Micu ◽  
Eugen Rusu

Traditionally and socially, the tourism in Constanta is considered to be important to the local economy. Sun and beach locations are both a draw for locals and tourists to the city, on the Black Sea. However, vacation-oriented activities in the city only have a seasonal cycle. In this paper, we proposed to analyze the mass tourist activity in Constanta, taking into account economic, social, and environmental conditions. Additionally, we attempted to build a model based on the data available. The model was developed using a PESTEL analysis to determine the supportability factor of the indicators identified. We also set out to create a projection of the activities proposed for analysis by 2050. To create a model for coastal areas, the data used in this research must be accurate and consistent. Furthermore, correctly identifying indicators and their relationships is a critical step in conducting a thorough study. Last but not least, finding the calculation coefficient for the activity in question is critical, as collecting data from various activities might be challenging when trying to find a feasible model.


2020 ◽  
Vol 5 (4) ◽  
pp. 37-55
Author(s):  
T. V. Malakhova ◽  
V. N. Egorov ◽  
L. V. Malakhova ◽  
Yu. G. Artemov ◽  
N. V. Pimenov

Methane gas bubble emissions (seeps) are widespread phenomenon in the World Ocean, inter alia in Black Sea basin. The relevance of the research of methane seeps is due to their important role as a source of methane – greenhouse and environment-forming gas – for water column and atmosphere. The article presents a comparative analysis of the data from our biogeochemical 10-year studies of shallow gas seeps of the Crimean Peninsula and data on deep-sea gas seeps of the Black Sea. During 10-year period, apart from carrying out hydroacoustic research, the following parameters were determined: bubble gas component composition, methane carbon isotopic composition, microbial community structure of bacterial mats, covering gas bubble emission sites, and gas fluxes from separate seeps. During long-term monitoring, 14 separate gas bubble emission sites were detected and described in Crimean coastal areas; they were located from Cape Tarkhankut in the west of the peninsula to the Dvuyakornaya Bay in the southeast. Crimean coastal seeps were mostly of biogenic origin, with a seasonal type of gas bubble emission. Laspi Bay seeps were classified as emissions of deep gas of thermocatalytic genesis. A significant variation was recorded in values of isotopic composition of methane carbon δ13C-CH4 of bubble gas in coastal shallow areas (−94…−34 ‰), which indicates different conditions for bubble gas generation and maturation in seabed sediments. Similar to deep-sea seeps, coastal gas bubble emissions were accompanied by bacterial mats of diverse structure, with different dominating species. As shown, formation of stable bacterial biomass, usually consisting of sulfide- and sulfur-oxidizing bacteria, requires a fluid flux of reduced dissolved gases, while pointwise bubble gas discharge does not provide sufficient concentration gradients and can mechanically disrupt community structure. Various methods were used to estimate the size spectra of bubbles, as well as fluxes from separate seeps. Gas flux values varied from 1.8 L·day−1 (the Martynova Bay) to 40 L·day−1 (the Laspi Bay). The environment-forming effects, related to gas bubble emission in coastal areas, are discussed: effect of seeps on oxygen conditions in seabed sediments and in water column above gas emission sites, vertical water mixing due to gas lift effect, and fluid discharge at gas emission sites.


2021 ◽  
Vol 4 (2) ◽  
pp. 159-169
Author(s):  
Eko Sumartono ◽  
Gita Mulyasari ◽  
Ketut Sukiyono

Bengkulu is said to be the center of the world's climate because of the influence of water conditions and the topography of the area where the rain cloud formation starts. The waters in Bengkulu Province become a meeting place for four ocean currents which eventually become an area where the evaporation process of forming rain clouds becomes the rainy or dry season and affects the world climate. Method to analyze descriptively, shows oldeman Classification and satellite rainfall estimation data is added. In relation to the Analysis of Potential Food Availability for the Coastal Areas of Bengkulu Province uses a quantifiable descriptive analysis method based. The results show that most are included in the Oldeman A1 climate zone, which means it is suitable for continuous rice but less production due to generally low radiation intensity throughout the year. In an effort to reduce or eliminate the impact of climate change on food crop production, it is necessary to suggest crop diversification, crop rotation, and the application of production enhancement technologies. Strategies in building food availability as a result of climate change are: First, develop food supplies originating from regional production and food reserves on a provincial scale. Second, Empowering small-scale food businesses which are the dominant characteristics of the agricultural economy, especially lowland rice and horticultural crops. Third, Increase technology dissemination and increase the capacity of farmers in adopting appropriate technology to increase crop productivity and business efficiency. Four, Promote the reduction of food loss through the use of food handling, processing and distribution technologies. 


Sign in / Sign up

Export Citation Format

Share Document