scholarly journals DECAY RESISTANCE OF WEATHERED BEECH WOOD

Author(s):  
Sebnem Sevil ARPACI ◽  
Merve CAMBAZOĞLU ◽  
Eylem DİZMAN TOMAK
Keyword(s):  
2020 ◽  
Vol 71 (4) ◽  
pp. 379-388
Author(s):  
Soheila Izadyar ◽  
Yaser Babaei ◽  
Davood Efhamisisi

This study was carried out to investigate the physical properties and decay resistance of beech wood treated with natural pistachio resin (PR) from Iranian wild pistachio trees (Pistacia atlantica), alone and in combination with boric acid (BA). Wood samples were impregnated with different concentration of PR dissolved in ethanol (3 to 20 %) with vacuum-pressure technology. The combination of PR (20 %) and BA (2 %) was also conducted to evaluate any interaction or synergistic effects. The water absorption, volumetric swelling, and decay resistance against Trametes versicolor fungi, before and after a leaching test (EN 84), were measured on treated and untreated samples. The chemical compositions of PR were also identified by gas chromatography–mass spectrometry (GC-MS) techniques. The chemicals analysis identified more than 20 different compounds in the PR, monoterpenoids being the predominant fraction and α-pinene the major component. The samples treated with a higher concentration of PR showed much higher weight gain percentage (WG%). The results showed that the increase in WG% reduced the average values of water absorption and volumetric swelling of treated samples even after long terms of soaking in water. The decay resistance of the treated samples increased against white rotting fungi as the values of WG% increased. Efficient protection was seen when a combined treatment of PR and BA was used. Even after the leaching process, the weight loss of the treated samples was less than 3 percent. The samples treated with BA alone largely lost their effectiveness against fungal attack after the leaching. The use of PR along with an environmental friendly co-biocide can also be recommended for wood preservation in places that require minimal toxicity.


Holzforschung ◽  
2020 ◽  
Vol 74 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Clément L’Hostis ◽  
Emmanuel Fredon ◽  
Marie-France Thévenon ◽  
Francisco-José Santiago-Medina ◽  
Philippe Gérardin

AbstractThis paper deals with an original and non-biocidal chemical treatment consisting of a vacuum/pressure impregnation step of beech wood with a water-borne mixture made from heat-activated condensation of succinic anhydride (SA) and glycerol (G). Chemical structures of adducts were established using matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF) investigations. Beech wood was impregnated and cured in order to induce in situ polymerization of glycerol/succinic adducts (GSA) in the cell walls, leading to the formation of polyglycerol succinate (PGS) polyester. Various treatment conditions were investigated depending on the duration (6–72 h) and curing temperature (103–160°C). Weight percent gains (WPGs) ranging between 40 and 60% were obtained. Attenuated total reflectance-middle infrared spectroscopy (ATR-MIR) and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy confirmed polyester formation. A curing temperature of 160°C was found to be the best condition to totally avoid polymer leaching, and brought the anti-swelling efficiency (ASE) up to 64%. Decay resistance of PGS-treated wood against Trametes versicolor and Coniophora puteana was also strongly temperature and time dependent: performances fit with the EN113 standard requirements if a curing temperature of 160°C was applied.


2020 ◽  
Vol 28 (2) ◽  
pp. 175-182
Author(s):  
Amir Ghavidel ◽  
Ion Sandu ◽  
Viorica Vasilache

2021 ◽  
Vol 72 (4) ◽  
pp. 353-363
Author(s):  
Huseyin Pelit ◽  
Ali Alkan ◽  
Mesut Yalcin

In this study, the effect of impregnation with natural extracts on decay resistance and color change of pine and beech wood was analyzed. Flowers of Rhododendron luteum and Rhododendron ponticum plants were extracted according to the decoction method and aqueous solutions were prepared at different concentration levels (2 %, 4 % and 7 %). In addition, ferrous sulfate, copper sulfate and aluminum sulfate mordants were added to the solution to improve the properties of the extracts. Then the wood specimens were impregnated with the prepared solutions. The results indicated that the effect of plant species on the mass loss of specimens exposed to T. versicolor (white-rot fungus) was insignificant. Non-mordant extracts had a slight effect on the mass loss of the specimens. However, in pine and beech specimens impregnated with mordant-added (especially ferrous sulfate-added) extracts, mass loss was significantly reduced and resistance to fungal rot was almost completely achieved. The concentration level did not have a significant effect on the mass loss of specimens treated with mordant-added extracts. After impregnation, the L* value of all specimens (especially those treated with ferrous sulfate-added extracts) decreased and the specimens darkened. The a* and b* values increased in specimens treated with non-mordant and aluminum sulfate-added extracts and these specimens tend to have a red-yellow color. The a* value decreased and the b* value increased in wood specimens treated with copper sulfate-added extracts. The green-yellow color trend of these specimens increased. Both the a* and b* values of the specimens treated with ferrous sulfate-added extracts decreased and the green-blue color tendency increased in these specimens. The increase in the concentration level positively affected the determined color changes. The total color change (ΔE*) was higher in wood specimens (especially pine) treated with ferrous sulfate-added R. ponticum extracts.


Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Oliver Weigenand ◽  
Miha Humar ◽  
Geoffrey Daniel ◽  
Holger Militz ◽  
Carsten Mai

AbstractAn amino-silicone (AS; amino-polydimethylsiloxane) micro-emulsion was tested for its suitability to preserve wood against basidiomycetes in a mini-block experiment and in a test according to the European standard (1996) EN 113. Decay resistance was assessed against the white rot fungiTrametes versicolor,Ceriporiopsis subvermispora, andHypoxylon fragiforme, as well as the brown rot fungiConiophora puteana,Antrodia vaillantii,Gloeophyllum trabeumandSerpula lacrymans. Pine sapwood and beech wood were treated with AS emulsions at solute concentration levels of 2%, 5% and 15%. The mini-blocks treated with 15% concentrations of AS resisted decay byT. versicolorandC. puteanaover a long time (12 weeks), while samples treated with low and moderate concentrations underwent considerable mass losses. Accordingly, microscopic studies revealed a high degree of colonisation by the white rot fungus and loss of cell wall integrity (brown rot) in samples treated with 2% AS. At high AS content (15%), no or only initial stages of decay could be observed. In the European standard (1996) test EN 113, the mass loss in all fungal cultures except for the white rot ascomyceteH. fragiformewas below 5%, when the samples were treated with 15% AS. The effect of low and moderate AS concentration on the decay resistance was dependent on the fungal strain. The mode of action of AS treatment against basidiomycete decay is discussed.


Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 291-299 ◽  
Author(s):  
Clément L’Hostis ◽  
Marie-France Thévenon ◽  
Emmanuel Fredon ◽  
Philippe Gérardin

AbstractBeech wood has been treated by impregnation followed by heating at various temperatures with solutions containing citric acid (CA) or tartaric acid (TA) alone or in combination with glycerol (G), i.e. with G+CA and G+TA. The resulting modified woods were tested in terms of resistance to leaching, durability and dimensional stability. These properties are improved as a function of heating temperature, which leads to higher levels of poly-esterification involving grafting onto wood simultaneously with thermal degradation of wood. Dimensional stability of all treated wood was increased, but glycerol does not have a positive effect with this regard. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy contributed to understanding the effects of the different treatments.In situpolymerization of G+TA at 140°C increased the bending resistance, while G+CA polymerization does not compensate notably the mechanical weakness induced by thermal degradation of wood at higher temperatures. However, G+CA treatment is more efficient regarding leaching and decay resistance, than that with G+TA.


Author(s):  
Jan Baar ◽  
Petr Hrdlička ◽  
Peter Rademacher ◽  
Jiří Volánek ◽  
Radim Rousek ◽  
...  
Keyword(s):  

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vladimirs Biziks ◽  
Sascha Bicke ◽  
Gerald Koch ◽  
Holger Militz

AbstractTreating wood with water-soluble resins is a well-known and effective method to improve the durability of wood. However, there has been no systematic work to date related to the influence of average molecular size of phenol-formaldehyde (PF) resin on the decay resistance of wood, especially of hardwoods. Therefore, the goal of this study was to investigate the effect of average molecular size of PF resin treatment on the resistance of beech wood against brown- and white-rot fungi. Four different average molecular weights (Mw) of resol type resin oligomers (297, 421, 655 and 854 g/mol) were examined. Different weight percent gains (WPGs) in European beech (Fagus sylvatica) wood blocks (15 × 20 × 50 mm3) were attained through vacuum impregnation using various concentrations of aqueous-PF solutions. Afterwards treated wood blocks passed the leaching and were exposed to brown-rot fungi (Gloeophyllum trabeum; Coniophora puteana) and white-rot fungi (Trametes versicolor) for 16 weeks. No effect of oligomer size on the resistance against G. trabeum decay of wood blocks was observed, resulting in resin loadings of 7–8%. The required WPG for resistance to brown-rot decay by C. puteana increased slightly with increasing oligomer molecular size: 6, 7, 10 and 11% for wood treated with 297, 421, 655 and 854 g/mol, respectively. The extent of white-rot fungal decay resistance of treated wood was affected by the molecular size of oligomers. Resin loadings of 8% and of 17% against T. versicolor were required to attain similar durability levels for beech wood treated with Mw = 297 and 854 g/mol, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1551
Author(s):  
Dita Machová ◽  
Anna Oberle ◽  
Lucie Zárybnická ◽  
Jakub Dohnal ◽  
Vít Šeda ◽  
...  

The aim of this paper was to analyze selected properties of beech wood (Fagus sylvatica L.) treated by one-sided surface charring. Specimens were one-side charred with a hot plate using several time-temperature combinations (from 200 to 400 °C). Characteristics such as colour, discoloration, surface roughness, fire resistance, total carbohydrate content at several wood layers and decay resistance were evaluated. Surface charring was applied to the radial and tangential surfaces. Colour measurements showed that the surface of the wood turned grey due to charring. In addition to colour measurements, other experiments showed significant differences between radial and tangential specimens due to their different structures. The higher the temperature used in treating them, the lower the roughness values for radial specimens, while the trend for tangential specimens was the opposite. A smoother surface is more fire resistant, so radial specimens are generally better in this regard. Tangential specimens are more susceptible during preparation to forming cracks that impair flame resistance because a continuous protective densified layer is not formed. The determination of total carbohydrates revealed significant changes at various wood depths after surface charring. These changes were more predictable in radial specimens due to the annual ring orientation, because each layer consisted of a similar earlywood/latewood ratio. Finally, when decay resistance was assessed, weight loss was found to be lower in all specimens than in the references. The results suggest that charring at a particular combination of temperature and time improved the investigated properties of the surface-modified beech.


Sign in / Sign up

Export Citation Format

Share Document