scholarly journals A multimodal analysis of Magnetic Resonance Imaging for the study of brain abnormalities in migraine: gray matter morphometry, white matter integrity and structural connectivity

2021 ◽  
Author(s):  
Álvaro Planchuelo Gómez
SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Allen A Champagne ◽  
Emile Peponoulas ◽  
Itamar Terem ◽  
Andrew Ross ◽  
Maryam Tayebi ◽  
...  

Abstract Increasing evidence for the cumulative effects of head trauma on structural integrity of the brain has emphasized the need to understand the relationship between tissue mechanic properties and injury susceptibility. Here, diffusion tensor imaging, helmet accelerometers and amplified magnetic resonance imaging were combined to gather insight about the region-specific vulnerability of the corpus callosum to microstructural changes in white-matter integrity upon exposure to sub-concussive impacts. A total of 33 male Canadian football players (meanage = 20.3 ± 1.4 years) were assessed at three time points during a football season (baseline pre-season, mid-season and post-season). The athletes were split into a LOW (N = 16) and HIGH (N = 17) exposure group based on the frequency of sub-concussive impacts sustained on a per-session basis, measured using the helmet-mounted accelerometers. Longitudinal decreases in fractional anisotropy were observed in anterior and posterior regions of the corpus callosum (average cluster size = 40.0 ± 4.4 voxels; P < 0.05, corrected) for athletes from the HIGH exposure group. These results suggest that the white-matter tract may be vulnerable to repetitive sub-concussive collisions sustained over the course of a football season. Using these findings as a basis for further investigation, a novel exploratory analysis of strain derived from sub-voxel motion of brain tissues in response to cardiac impulses was developed using amplified magnetic resonance imaging. This approach revealed specific differences in strain (and thus possibly stiffness) along the white-matter tract (P < 0.0001) suggesting a possible signature relationship between changes in white-matter integrity and tissue mechanical properties. In light of these findings, additional information about the viscoelastic behaviour of white-matter tissues may be imperative in elucidating the mechanisms responsible for region-specific differences in injury susceptibility observed, for instance, through changes in microstructural integrity following exposure to sub-concussive head impacts.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wha Jin Lee ◽  
Cindy W. Yoon ◽  
Sung-Woo Kim ◽  
Hye Jin Jeong ◽  
Seongho Seo ◽  
...  

Early- and late-onset Alzheimer’s disease (AD) patients often exhibit distinct features. We sought to compare overall white matter connectivity and evaluate the pathological factors (amyloid, tau, and vascular pathologies) that affect the disruption of connectivity in these two groups. A total of 50 early- and 38 late-onset AD patients, as well as age-matched cognitively normal participants, were enrolled and underwent diffusion-weighted magnetic resonance imaging to construct fractional anisotropy-weighted white matter connectivity maps. [18F]-THK5351 PET, [18F]-Flutemetamol PET, and magnetic resonance imaging were used for the evaluation of tau and related astrogliosis, amyloid, and small vessel disease markers (lacunes and white matter hyperintensities). Cluster-based statistics was performed for connectivity comparisons and correlation analysis between connectivity disruption and the pathological markers. Both patient groups exhibited significantly disrupted connectivity compared to their control counterparts with distinct patterns. Only THK retention was related to connectivity disruption in early-onset AD patients, and this disruption showed correlations with most cognitive scores, while late-onset AD patients had disrupted connectivity correlated with amyloid deposition, white matter hyperintensities, and lacunes in which only a few cognitive scores showed associations. These findings suggest that the pathogenesis of connectivity disruption and its effects on cognition are distinct between EOAD and LOAD.


2020 ◽  
Vol 32 (1) ◽  
pp. 177-187
Author(s):  
Rebecca J. Lepping ◽  
Robert N. Montgomery ◽  
Palash Sharma ◽  
Jonathan D. Mahnken ◽  
Eric D. Vidoni ◽  
...  

BackgroundCKD is associated with abnormalities in cerebral blood flow, cerebral neurochemical concentrations, and white matter integrity. Each of these is associated with adverse clinical consequences in the non-CKD population, which may explain the high prevalence of dementia and stroke in ESKD. Because cognition improves after kidney transplantation, comparing these brain abnormalities before and after kidney transplantation may identify potential reversibility in ESKD-associated brain abnormalities.MethodsIn this study of patients with ESKD and age-matched healthy controls, we used arterial spin labeling to assess the effects of kidney transplantation on cerebral blood flow and magnetic resonance spectroscopic imaging to measure cerebral neurochemical concentrations (N-acetylaspartate, choline, glutamate, glutamine, myo-inositol, and total creatine). We also assessed white matter integrity measured by fractional anisotropy (FA) and mean diffusivity (MD) with diffusion tensor imaging. We used a linear mixed model analysis to compare longitudinal, repeated brain magnetic resonance imaging measurements before, 3 months after, and 12 months after transplantation and compared these findings with those of healthy controls.ResultsStudy participants included 29 patients with ESKD and 19 controls; 22 patients completed post-transplant magnetic resonance imaging. Cerebral blood flow, which was higher in patients pretransplant compared with controls (P=0.003), decreased post-transplant (P<0.001) to values in controls. Concentrations of neurochemicals choline and myo-inositol that were higher pretransplant compared with controls (P=0.001 and P<0.001, respectively) also normalized post-transplant (P<0.001 and P<0.001, respectively). FA increased (P=0.001) and MD decreased (P<0.001) post-transplant.ConclusionsCertain brain abnormalities in CKD are reversible and normalize with kidney transplantation. Further studies are needed to understand the mechanisms underlying these brain abnormalities and to explore interventions to mitigate them even in patients who cannot be transplanted.Clinical Trial registry name and registration number:Cognitive Impairment and Imaging Correlates in End Stage Renal Disease, NCT01883349


2010 ◽  
Vol 3 (5) ◽  
pp. 203-213 ◽  
Author(s):  
Oswald J.N. Bloemen ◽  
Quinton Deeley ◽  
Fred Sundram ◽  
Eileen M. Daly ◽  
Gareth J. Barker ◽  
...  

2011 ◽  
Vol 4 (2) ◽  
pp. 160-160
Author(s):  
Oswald J.N. Bloemen ◽  
Quinton Deeley ◽  
Fred Sundram ◽  
Eileen M. Daly ◽  
Gareth J. Barker ◽  
...  

Author(s):  
Corey W. Bown ◽  
Omair A. Khan ◽  
Elizabeth E. Moore ◽  
Dandan Liu ◽  
Kimberly R. Pechman ◽  
...  

Objective: To determine whether baseline aortic stiffness, measured by aortic pulse wave velocity (PWV), relates to longitudinal cerebral gray or white matter changes among older adults. Baseline cardiac magnetic resonance imaging will be used to assess aortic PWV while brain magnetic resonance imaging will be used to assess gray matter and white matter hyperintensity (WMH) volumes at baseline, 18 months, 3 years, 5 years, and 7 years. Approach and Results: Aortic PWV (m/s) was quantified from cardiac magnetic resonance. Multimodal 3T brain magnetic resonance imaging included T 1 -weighted imaging for quantifying gray matter volumes and T 2 -weighted fluid-attenuated inversion recovery imaging for quantifying WMHs. Mixed-effects regression models related baseline aortic PWV to longitudinal gray matter volumes (total, frontal, parietal, temporal, occipital, hippocampal, and inferior lateral ventricle) and WMH volumes (total, frontal, parietal, temporal, and occipital) adjusting for age, sex, race/ethnicity, education, cognitive diagnosis, Framingham stroke risk profile, APOE (apolipoprotein E)-ε4 carrier status, and intracranial volume. Two hundred seventy-eight participants (73±7 years, 58% male, 87% self-identified as non-Hispanic White, 159 with normal cognition, and 119 with mild cognitive impairment) from the Vanderbilt Memory & Aging Project (n=335) were followed on average for 4.9±1.6 years with PWV measurements occurring from September 2012 to November 2014 and longitudinal brain magnetic resonance imaging measurements occurring from September 2012 to June 2021. Higher baseline aortic PWV was related to greater decrease in hippocampal (β=−3.6 [mm 3 /y]/[m/s]; [95% CI, −7.2 to −0.02] P =0.049) and occipital lobe (β=−34.2 [mm 3 /y]/[m/s]; [95% CI, −67.8 to −0.55] P =0.046) gray matter volume over time. Higher baseline aortic PWV was related to greater increase in WMH volume over time in the temporal lobe (β=17.0 [mm 3 /y]/[m/s]; [95% CI, 7.2–26.9] P <0.001). All associations may be driven by outliers. Conclusions: In older adults, higher baseline aortic PWV related to greater decrease in gray matter volume and greater increase in WMHs over time. Because of unmet cerebral metabolic demands and microvascular remodeling, arterial stiffening may preferentially affect certain highly active brain regions like the temporal lobes. These same regions are affected early in the course of Alzheimer disease.


2019 ◽  
Vol 61 (4) ◽  
pp. 487-495
Author(s):  
Hyeong Cheol Moon ◽  
Byeong Ho Oh ◽  
Chaejoon Cheong ◽  
Won Seop Kim ◽  
Kyung Soo Min ◽  
...  

Background Chronic repeated transient ischemic changes are one of the common symptoms of moyamoya disease that could affect cortical and subcortical atrophy. Purpose We aimed to assess the cortical gray matter volume and thickness, white matter subcortical volume, and clinical characteristics using 7-T magnetic resonance imaging (MRI) and MR angiography (MRA). Material and Methods In this case-control study, whole-brain parcellation of gray matter and subcortical volumes were manually assessed in nine patients with moyamoya disease (18 hemispheres; median age = 34 years; age range = 10–60 years) and nine healthy controls (18 hemispheres; median age = 29 years; age range = 20–62 years) matched for age and sex, who underwent both 7-T MRI and MRA. The volumes were measured using high-resolution image (<1 mm) processing based on the Desikan-Killiany-Tourville (DKT) atlas, via an automated segmentation method (FreeSurfer version 6.0). Results The gray matter volume of the left precentral cortex and the white matter volume of the subcortical cerebellum were lower in both hemispheres in the patients with moyamoya disease compared to the healthy controls. Conclusion Gray matter atrophy in the precentral cortex and cerebellar white matter were detected in this 7-T MRI volumetric analysis study of patients with moyamoya disease who experienced repeated transient ischemic changes. Cortical atrophy in precentral cortex and cerebellum could explain the transient motor weakness in patients with moyamoya disease, as one of the early findings was that patients with moyamoya disease do not have detectable infarction changes on conventional MRI images.


Sign in / Sign up

Export Citation Format

Share Document